Published in Proceedings of the Royal Society B
Article DOI: http://dx.doi.org/10.1098/rspb.2020.0575
library(tidyverse) # data re-shaping, ggplot, stringr and more
library(png) # to load images
library(grid) # to plot images
library(lme4) # for the lmer and glmer mixed model functions
library(lmerTest) # Used to get p-values for lmer models using simulation. It over-writes lmer() with a new version
library(glmmTMB) # for zero-inflated or hurdle glms
library(MuMIn) # for model selection and averaging
library(emmeans) # for pairwise comparisons
library(ggpubr) # for the ggarrange function
library(ggbeeswarm) # violin plots with data points
library(kableExtra) # nice tables that can scroll
library(pander) # more nice tables
library(groupdata2) # for assigning rows in data-frames to groups
Schematic for replacement of the unknown Sxl-GFP nuclear background with the isogenic w1118 background
img <- readPNG("Crossing_scheme.png")
grid.raster(img)
Figure S1: Crossing scheme used to create a standard homozygous w1118-GFP line. Males from this line were crossed with females carrying a specific mitochondrial haplotype, to create experimental mt-strains. These newly produced strains carried the mitochondrial haplotype of the female and were heterozygous for the Sxl-GFP construct. G1 = the first generation of the cross.
Table S1: Recipe for food medium used in our experiment. The provided quantities make ~ 1 litre of food.
tibble("Ingredients" = c("Soy flour", "Cornmeal", "Yeast", "Dextrose", "Agar", "Water", "Tegosept", "Acid mix (4 ml orthophosphoric acid, 41 ml propionic acid, 55 ml water to make 100 mls)"),
"Quantity" = c("20 g", "73 g", "35 g", "75 g", "6 g", "1000 mls", "17 mls", "14 mls")) %>%
pander(split.cell = 20, split.table = Inf)
Ingredients | Quantity |
---|---|
Soy flour | 20 g |
Cornmeal | 73 g |
Yeast | 35 g |
Dextrose | 75 g |
Agar | 6 g |
Water | 1000 mls |
Tegosept | 17 mls |
Acid mix (4 ml orthophosphoric acid, 41 ml propionic acid, 55 ml water to make 100 mls) | 14 mls |
Here we include all code used to run our analysis and create Figure 1 and 2, our rationale behind the modelling approaches, and tables S2-9.
# Read in data frame and add Dyad_ID column
all_data <- read.csv("mtDNA_larval_competition_data.csv") %>%
arrange(Individual) %>%
group(n = 2, method = "greedy") %>% rename(Dyad_ID = .groups)
# helper function for saving large model objects and naming the file object.rds
save_it <- function(object){
saveRDS(get(object), file = paste(object, ".rds", sep = ""))}
# Create a function for standard error
SE <- function(x) sd(x)/sqrt(length(x))
# Clean the dataset up for analysis
# Select the columns we're interested in and rename them
fitness_data <- dplyr::select(all_data, Individual, Block, Strain, Dyad_ID, Sex, Focal.haplotype, Social.haplotype, Mortality, Development.time..hrs., Wing.size..mm., Female.offspring, Male.offspring, Total.female.assay, Total.red.all.vials, Total.bw.all.vials, Proportion.red.all.vials) %>%
rename(Block = Block, Survived = Mortality, Focal_haplotype = Focal.haplotype, Social_haplotype = Social.haplotype, Dev_time = Development.time..hrs., Wing_length = Wing.size..mm., Maternal_female_offspring = Female.offspring, Maternal_male_offspring = Male.offspring, Maternal_total_offspring = Total.female.assay, Paternal_focal_offspring = Total.red.all.vials, Paternal_bw_offspring = Total.bw.all.vials, Proportion_focal = Proportion.red.all.vials)
# Define new levels for mortality to make renaming possible
levels(fitness_data$Survived) <- c(levels(fitness_data$Survived), "NO")
levels(fitness_data$Survived) <- c(levels(fitness_data$Survived), "YES")
# Rename the mortality responses
# L means died as larva, P means died as pupae, N means did not die (i.e. eclosed as an adult)
fitness_data$Survived[fitness_data$Survived == 'L'] <- 'NO'
fitness_data$Survived[fitness_data$Survived == 'P'] <- 'NO'
fitness_data$Survived[fitness_data$Survived == 'N'] <- 'YES'
# Now that it makes sense change "YES" to 1 and "NO" to 0 so we can fit a binomial GLM.
levels(fitness_data$Survived) <- c(levels(fitness_data$Survived), "1")
levels(fitness_data$Survived) <- c(levels(fitness_data$Survived), "0")
fitness_data$Survived[fitness_data$Survived == "YES"] <- 1
fitness_data$Survived[fitness_data$Survived == "NO"] <- 0
# Make the factor numeric
fitness_data$Survived <- as.numeric(as.character(fitness_data$Survived))
# Create specific datasets for each fitness trait
# Remove all rows that contain an NA value in the survival column. The NAs mean things like the GFP sorting did not work, or the vial was never set up due to a shortage of larvae. They are not meaningful data, and we remove them here.
survival <- fitness_data %>% filter(!is.na(Survived))
# Remove all rows that contain an NA value in the development time column. This instances represent flies where we failed to measure development time.
larval_development <- fitness_data %>% filter(!is.na(Dev_time))
# Remove all rows that contain an NA value in the wing length column. Wing length was not measured in Blocks 1 and 2.
body_size <- fitness_data %>% filter(!is.na(Wing_length))
# Remove all rows that contain an NA value in the female reproductive output column (e.g. all the males), and where females did not survive to adulthood (coded as producing 0 offspring).
female_reproductive_output <- fitness_data %>% filter(!is.na(Maternal_total_offspring), Survived == 1)
# Male adult fitness
# First remove females from the dataset.
Male_fitness <- fitness_data %>% filter(!is.na(Paternal_focal_offspring))
# Create an offspring counted column so that the data is correctly formatted for a binomial success-failure model.
Male_fitness$Offspring_counted <- Male_fitness$Paternal_focal_offspring + Male_fitness$Paternal_bw_offspring
# Now lets remove vials where the female produced 0 offspring (this includes trials where the male died in development), as we cannot determine paternity from these vials. The tidy up the dataframe by removing unneccessary columns
Male_fitness <- Male_fitness %>% filter(!(Offspring_counted == 0)) %>%
select(-Maternal_female_offspring, -Maternal_male_offspring, -Maternal_total_offspring) %>%
rename(Focal_male_offspring = Paternal_focal_offspring, bw_male_offspring = Paternal_bw_offspring)
We analysed the data using linear and generalised linear mixed models in the lmer
andglmmTMB
packages for R.
Fixed effects
For the analysis of fitness traits expressed in both sexes (survival, development time and body size), we are interested in the effect of an individual’s focal mtDNA, the mtDNA of a social competitor and the effect of sex on fitness. To measure these potential effects each model contained the following fixed effects and the three-way interaction between these variables:
Focal haplotype: the mtDNA haplotype that an individual carries.
Social haplotype: the mtDNA haplotype carried by a social partner during larval development.
Sex: the sex of the focal individual. The social partner’s sex was always opposite to that of the focal individual.
Random effects
Duplicate strain: Each haplotype has been introgressed alongside the w1118 nuclear background in two independent duplicates, creating 10 total strains. Within each block we ran multiple replicates that were made up of flies from the first set of strains (i.e. Barcelona 1, Brownsville 1 etc.), while the other half used only flies from the second set of strains. This random effect accounts for any residual differences in the nuclear genome, epigenome, microbiome or vial environment that may have arisen between duplicates.
Block: accounts for differences in the response variable between experimental blocks (e.g. to variance in temperature or composition of the fly food). In our experiment a block contained multiple replicates and a replicate was made up of 25 different cells each housing a pair of larvae.
Dyad ID: accounts for differences in the quality of the larval environment between pairs of larvae. For example, the moisture content of the food varied between pipette tips, despite our best efforts to keep this variable constant.
Model evaluation
Each model was evaluated and ranked by AICc values using the dredge
function, from the Mumin
package. There was rarely a single model that was unequivocally the best fit to the data, so we conducted model averaging for the set of models where delta was < 6, as suggested by Symonds and Moussalli (2011). The present study is a planned experiment to measure the effect of mtDNA on fitness, so we derived model estimates from the conditional model averages.
\(~\)
\(~\)
The model:
Survival ~ Focal_haplotype * Social_haplotype * Sex + (1|Strain) + (1|Block) + (1|Dyad_ID)
# Fit the global model
survival_model <- lme4::glmer(Survived ~ Focal_haplotype * Social_haplotype * Sex + (1|Strain) + (1|Block) + (1|Dyad_ID), data = survival, family = "binomial", control = glmerControl(optimizer = "Nelder_Mead", optCtrl=list(maxfun=100000)), na.action = na.fail)
Table S2: Evaluation of the survivorship model. All possible models were evaluated from the global model that included a three-way interaction between focal haplotype, social haplotype and sex, as well as the random factors duplicate strain, block and dyad ID. As there was no clear top model, the final model was calculated via model averaging.
# Compare all possible combinations of models (from the global model)
if(file.exists("survival_dredge.rds")){ # If already done, just load the results
survival_dredge <- readRDS("survival_dredge.rds")
} else {survival_dredge <- dredge(survival_model) # If not already done, run all the models and save the results
lapply(c("survival_dredge"), save_it)
}
survival_table <- subset(survival_dredge, delta < 6, recalc.weights = FALSE) %>% as.data.frame()
names(survival_table)[names(survival_table) == "(Intercept)"] <- "Intercept"
names(survival_table)[names(survival_table) == "Focal_haplotype"] <- "Focal haplotype"
names(survival_table)[names(survival_table) == "Sex"] <- "Sex"
names(survival_table)[names(survival_table) == "Social_haplotype"] <- "Social haplotype"
names(survival_table)[names(survival_table) == "Focal_haplotype:Sex"] <- "Focal haplotype x Sex"
names(survival_table)[names(survival_table) == "Focal_haplotype:Social_haplotype"] <- "Focal haplotype x Social haplotype"
names(survival_table)[names(survival_table) == "Sex:Social_haplotype"] <- "Social haplotype x Sex"
names(survival_table)[names(survival_table) == "Focal_haplotype:Sex:Social_haplotype"] <- "Focal haplotype x Social haplotype x Sex"
names(survival_table)[names(survival_table) == "df"] <- "Degrees of freedom"
names(survival_table)[names(survival_table) == "logLik"] <- "Log likelihood"
names(survival_table)[names(survival_table) == "AICc"] <- "AICc"
names(survival_table)[names(survival_table) == "delta"] <- "Delta"
names(survival_table)[names(survival_table) == "weight"] <- "Weight"
pander(survival_table, split.cell = 40, split.table = Inf)
Intercept | Focal haplotype | Sex | Social haplotype | Focal haplotype x Sex | Focal haplotype x Social haplotype | Social haplotype x Sex | Focal haplotype x Social haplotype x Sex | Degrees of freedom | Log likelihood | AICc | Delta | Weight | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | -0.225 | NA | NA | NA | NA | NA | NA | NA | 4 | -1304 | 2617 | 0 | 0.4529 |
3 | -0.2715 | NA | + | NA | NA | NA | NA | NA | 5 | -1304 | 2618 | 1.066 | 0.2658 |
2 | -0.1177 | + | NA | NA | NA | NA | NA | NA | 8 | -1302 | 2619 | 2.469 | 0.1318 |
4 | -0.1639 | + | + | NA | NA | NA | NA | NA | 9 | -1301 | 2621 | 3.557 | 0.0765 |
5 | -0.2554 | NA | NA | + | NA | NA | NA | NA | 8 | -1303 | 2622 | 5.416 | 0.0302 |
\(~\)
Relative variable importance for each of the predictors and interactions in the survival model set. RVI can be interpreted as the likelihood the model term is present in the best performing model from the initial full set of possible models.
# present relative variable importance in a table
sw(survival_dredge) %>%
as.data.frame() %>%
pander(split.cell = 40, split.table = Inf, round = 3, col.names = "RVI")
RVI | |
---|---|
Sex | 0.377 |
Focal_haplotype | 0.231 |
Social_haplotype | 0.065 |
Focal_haplotype:Sex | 0.009 |
Sex:Social_haplotype | 0.004 |
Focal_haplotype:Social_haplotype | 0 |
Focal_haplotype:Sex:Social_haplotype | 0 |
\(~\)
Table S3: Effects of mtDNA and sex on egg-to-adult viability. Conditional estimates from model averaging the full generalised linear mixed model are shown. Models were included in the averaging subset if delta < 6. Bold rows indicate significant effects.
# Model average
# We need to create the top_survival_models object and average from that so that we can get mean estimates successfully using predict(), fitted() or eemeans()
top_survival_models <- get.models(survival_dredge, subset = delta < 6)
survival_avgm <- model.avg(top_survival_models)
# average the models with delta < 6
survival_CIs <- confint(survival_avgm) %>% as.data.frame()
survival_estimate <- coefTable(survival_avgm) %>% as.data.frame()
survival_p_values <- summary(survival_avgm)$coefmat.subset[, 5] %>% as.data.frame() %>% rename(p = ".")
survival_model_avg <- data.frame(survival_estimate, survival_CIs, survival_p_values) %>% select(Estimate, Std..Error, X2.5.., X97.5.., p)
row.names(survival_model_avg) <- c("Intercept", "Sex: Male", "Focal haplotype: Brownsville", "Focal haplotype: Dahomey", "Focal haplotype: Israel", "Focal haplotype: Sweden", "Social haplotype: Brownsville", "Social haplotype: Dahomey", "Social haplotype: Israel", "Social haplotype: Sweden")
names(survival_model_avg)[names(survival_model_avg) == "Estimate"] <- "Conditional average estimate"
names(survival_model_avg)[names(survival_model_avg) == "Std..Error"] <- "Standard Error"
names(survival_model_avg)[names(survival_model_avg) == "X2.5.."] <- "2.5% Interval"
names(survival_model_avg)[names(survival_model_avg) == "X97.5.."] <- "97.5% Interval"
pander(survival_model_avg, split.cell = 40, split.table = Inf, round = 3)
Conditional average estimate | Standard Error | 2.5% Interval | 97.5% Interval | p | |
---|---|---|---|---|---|
Intercept | -0.219 | 0.309 | -0.825 | 0.387 | 0.478 |
Sex: Male | 0.093 | 0.095 | -0.094 | 0.279 | 0.331 |
Focal haplotype: Brownsville | -0.084 | 0.151 | -0.38 | 0.213 | 0.58 |
Focal haplotype: Dahomey | 0.08 | 0.151 | -0.216 | 0.376 | 0.597 |
Focal haplotype: Israel | -0.261 | 0.153 | -0.561 | 0.039 | 0.088 |
Focal haplotype: Sweden | -0.214 | 0.154 | -0.515 | 0.088 | 0.164 |
Social haplotype: Brownsville | -0.073 | 0.152 | -0.371 | 0.224 | 0.628 |
Social haplotype: Dahomey | 0.039 | 0.152 | -0.258 | 0.336 | 0.797 |
Social haplotype: Israel | 0.167 | 0.152 | -0.13 | 0.464 | 0.27 |
Social haplotype: Sweden | 0.021 | 0.153 | -0.279 | 0.321 | 0.891 |
# The full average provides a parameter average across all models considered, including ones where the parameter coefficient is set to 0. The conditional average reports coefficents for only the models where the parameter is included.
The model:
Dev_time ~ Focal_haplotype * Social_haplotype * Sex + (1|Strain) + (1|Block) + (1|Dyad_ID)
# Fit the linear model
dev_model <- lmer(Dev_time ~ Focal_haplotype * Social_haplotype * Sex + (1|Strain) + (1|Block) + (1|Dyad_ID), larval_development, na.action = na.fail, REML = FALSE)
Table S4: Evaluation of the development time model. All possible models were evaluated from the global model that included a three-way interaction between focal haplotype, social haplotype and sex as well as the random factors duplicate strain, block and dyad ID. As there was no clear top model, the final model was calculated via model averaging.
# Use dredge to compare all possible models derived from the global model
Dev_dredge <- dredge(dev_model)
development_table <- subset(Dev_dredge, delta < 6, recalc.weights = FALSE) %>% as.data.frame()
names(development_table)[names(development_table) == "(Intercept)"] <- "Intercept"
names(development_table)[names(development_table) == "Focal_haplotype"] <- "Focal haplotype"
names(development_table)[names(development_table) == "Social_haplotype"] <- "Social haplotype"
names(development_table)[names(development_table) == "Focal_haplotype:Sex"] <- "Focal haplotype x Sex"
names(development_table)[names(development_table) == "Focal_haplotype:Social_haplotype"] <- "Focal haplotype x Social haplotype"
names(development_table)[names(development_table) == "Sex:Social_haplotype"] <- "Social haplotype x Sex"
names(development_table)[names(development_table) == "Focal_haplotype:Sex:Social_haplotype"] <- "Focal haplotype x Social haplotype x Sex"
names(development_table)[names(development_table) == "df"] <- "Degrees of freedom"
names(development_table)[names(development_table) == "logLik"] <- "Log likelihood"
names(development_table)[names(development_table) == "AICc"] <- "AICc"
names(development_table)[names(development_table) == "delta"] <- "Delta"
names(development_table)[names(development_table) == "weight"] <- "Weight"
pander(development_table, split.cell = 40, split.table = Inf)
Intercept | Focal haplotype | Sex | Social haplotype | Focal haplotype x Sex | Focal haplotype x Social haplotype | Social haplotype x Sex | Focal haplotype x Social haplotype x Sex | Degrees of freedom | Log likelihood | AICc | Delta | Weight | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 260.5 | NA | + | NA | NA | NA | NA | NA | 6 | -2998 | 6008 | 0 | 0.7286 |
1 | 261.6 | NA | NA | NA | NA | NA | NA | NA | 5 | -3001 | 6012 | 3.858 | 0.1059 |
4 | 261.9 | + | + | NA | NA | NA | NA | NA | 10 | -2996 | 6012 | 3.98 | 0.09962 |
7 | 260.1 | NA | + | + | NA | NA | NA | NA | 10 | -2997 | 6014 | 5.995 | 0.03637 |
\(~\)
Relative variable importance for each of the predictors and interactions in the development time model set.
# present relative variable importance in a table
sw(Dev_dredge) %>%
as.data.frame() %>%
pander(split.cell = 40, split.table = Inf, round = 3, col.names = "RVI")
RVI | |
---|---|
Sex | 0.874 |
Focal_haplotype | 0.121 |
Social_haplotype | 0.051 |
Focal_haplotype:Sex | 0.003 |
Sex:Social_haplotype | 0.001 |
Focal_haplotype:Social_haplotype | 0 |
Focal_haplotype:Sex:Social_haplotype | 0 |
\(~\)
Table S5: Effects of mtDNA and sex on egg-to-adult development time. Conditional estimates from model averaging the full generalised linear mixed model are shown. Models were included in the averaging subset if delta < 6. Bold rows indicate significant effects.
# Model averaging
Dev_time_avg <- (model.avg(Dev_dredge, subset = delta < 6))
Dev_CIs <- confint(Dev_time_avg) %>% as.data.frame()
Dev_estimate <- coefTable(Dev_time_avg) %>% as.data.frame()
Dev_p_values <- summary(Dev_time_avg)$coefmat.subset[, 5] %>% as.data.frame() %>% rename(p = ".")
Dev_model_avg <- data.frame(Dev_estimate, Dev_CIs, Dev_p_values) %>% select(Estimate, Std..Error, X2.5.., X97.5.., p)
row.names(Dev_model_avg) <- c("Intercept", "Sex: Male", "Focal haplotype: Brownsville", "Focal haplotype: Dahomey", "Focal haplotype: Israel", "Focal haplotype: Sweden", "Social haplotype: Brownsville", "Social haplotype: Dahomey", "Social haplotype: Israel", "Social haplotype: Sweden")
names(Dev_model_avg)[names(Dev_model_avg) == "Estimate"] <- "Conditional average estimate"
names(Dev_model_avg)[names(Dev_model_avg) == "Std..Error"] <- "Standard Error"
names(Dev_model_avg)[names(Dev_model_avg) == "X2.5.."] <- "2.5% Interval"
names(Dev_model_avg)[names(Dev_model_avg) == "X97.5.."] <- "97.5% Interval"
pander(Dev_model_avg, split.cell = 40, split.table = Inf, emphasize.strong.rows = 2, round = 3)
Conditional average estimate | Standard Error | 2.5% Interval | 97.5% Interval | p | |
---|---|---|---|---|---|
Intercept | 260.8 | 2.353 | 256.2 | 265.4 | 0 |
Sex: Male | 2.173 | 0.891 | 0.427 | 3.919 | 0.015 |
Focal haplotype: Brownsville | -1.943 | 1.45 | -4.784 | 0.899 | 0.18 |
Focal haplotype: Dahomey | -2.688 | 1.417 | -5.466 | 0.09 | 0.058 |
Focal haplotype: Israel | -1.914 | 1.503 | -4.86 | 1.031 | 0.203 |
Focal haplotype: Sweden | -0.063 | 1.512 | -3.025 | 2.9 | 0.967 |
Social haplotype: Brownsville | 1.007 | 1.522 | -1.977 | 3.991 | 0.508 |
Social haplotype: Dahomey | -0.574 | 1.467 | -3.45 | 2.302 | 0.696 |
Social haplotype: Israel | 0.673 | 1.443 | -2.156 | 3.502 | 0.641 |
Social haplotype: Sweden | 1.376 | 1.479 | -1.523 | 4.275 | 0.352 |
\(~\)
We use wing length as a proxy for adult body size.
The model:
Wing_length ~ Focal_haplotype * Social_haplotype * Sex + (1|Strain) + (1|Block) + (1|Dyad_ID)
body_size_model <- lmer(Wing_length ~ Focal_haplotype * Social_haplotype * Sex + (1|Strain) + (1|Block) + (1|Dyad_ID), body_size, na.action = na.fail, REML = FALSE)
Table S6: Evaluation of the wing length model. All possible models were evaluated from the global model that included a three-way interaction between focal haplotype, social haplotype and sex, as well as the random factors duplicate strain, block and dyad ID. There was a clear top model; coefficients are displayed in Table S7.
# Compare all possible combinations of models (from the global model)
body_size_dredge <- dredge(body_size_model)
size_table <- subset(body_size_dredge, delta < 6, recalc.weights = FALSE) %>% as.data.frame()
names(size_table)[names(size_table) == "(Intercept)"] <- "Intercept"
names(size_table)[names(size_table) == "Focal_haplotype"] <- "Focal haplotype"
names(size_table)[names(size_table) == "Sex"] <- "Sex"
names(size_table)[names(size_table) == "Social_haplotype"] <- "Social haplotype"
names(size_table)[names(size_table) == "Focal_haplotype:Sex"] <- "Focal haplotype x Sex"
names(size_table)[names(size_table) == "Focal_haplotype:Social_haplotype"] <- "Focal haplotype x Social haplotype"
names(size_table)[names(size_table) == "Sex:Social_haplotype"] <- "Social haplotype x Sex"
names(size_table)[names(size_table) == "Focal_haplotype:Sex:Social_haplotype"] <- "Focal haplotype x Social haplotype x Sex"
names(size_table)[names(size_table) == "df"] <- "Degrees of freedom"
names(size_table)[names(size_table) == "logLik"] <- "Log likelihood"
names(size_table)[names(size_table) == "AICc"] <- "AICc"
names(size_table)[names(size_table) == "delta"] <- "Delta"
names(size_table)[names(size_table) == "weight"] <- "Weight"
pander(size_table, split.cell = 40, split.table = Inf)
Intercept | Focal haplotype | Sex | Social haplotype | Focal haplotype x Sex | Focal haplotype x Social haplotype | Social haplotype x Sex | Focal haplotype x Social haplotype x Sex | Degrees of freedom | Log likelihood | AICc | Delta | Weight | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 1.063 | NA | + | NA | NA | NA | NA | NA | 6 | 440.6 | -869 | 0 | 0.9201 |
\(~\)
Relative variable importance for each of the predictors and interactions in the wing length model set.
# present relative variable importance in a table
sw(body_size_dredge) %>%
as.data.frame() %>%
pander(split.cell = 40, split.table = Inf, round = 3, col.names = "RVI")
RVI | |
---|---|
Sex | 1 |
Social_haplotype | 0.044 |
Focal_haplotype | 0.038 |
Sex:Social_haplotype | 0.004 |
Focal_haplotype:Sex | 0.002 |
Focal_haplotype:Social_haplotype | 0 |
Focal_haplotype:Sex:Social_haplotype | 0 |
\(~\)
One model was retained in the delta < 6 subset; model averaging is not required.
Table S7: Effects of mtDNA and sex on wing length. Results from the best fitting generalised linear mixed model are shown. Bold rows indicate significant effects.
# Fit the top model
body_size_model_final <- lmer(Wing_length ~ Sex + (1|Strain) + (1|Block) + (1|Dyad_ID), body_size, na.action = na.fail, REML = FALSE)
Size_CIs <- confint(body_size_model_final) %>%
as.data.frame() %>%
slice(5:6)
Size_estimate <- coefTable(body_size_model_final) %>% as.data.frame()
Size_p_values <- summary(body_size_model_final)$coefficients[, 5] %>% as.data.frame() %>% rename(p = ".")
Size_model_avg <- data.frame(Size_estimate, Size_CIs, Size_p_values) %>% select(Estimate, Std..Error, X2.5.., X97.5.., p)
row.names(Size_model_avg) <- c("Intercept", "Sex: Male")
names(Size_model_avg)[names(Size_model_avg) == "Estimate"] <- "Conditional average estimate"
names(Size_model_avg)[names(Size_model_avg) == "Std..Error"] <- "Standard Error"
names(Size_model_avg)[names(Size_model_avg) == "X2.5.."] <- "2.5% Interval"
names(Size_model_avg)[names(Size_model_avg) == "X97.5.."] <- "97.5% Interval"
pander(Size_model_avg, split.cell = 40, split.table = Inf, emphasize.strong.rows = (2), round = 3)
Conditional average estimate | Standard Error | 2.5% Interval | 97.5% Interval | p | |
---|---|---|---|---|---|
Intercept | 1.063 | 0.015 | 1.024 | 1.1 | 0 |
Sex: Male | -0.086 | 0.007 | -0.1 | -0.072 | 0 |
\(~\)
To effectively accommodate zero-inflation, we modelled female offspring production using the glmmTMB
package (Brooks et al. 2017). This package allows us to fit hurdle models and zero-inflated models.
We analysed the number of offspring produced by females using a hurdle model with negative binomial errors. This approach allowed us to answer two questions: (1) did mtDNA affect the incidence of failing to produce any offspring? and (2) for females that produced at least one offspring, was the number of offspring produced affected by mtDNA?
The model:
Maternal_total_offspring ~ Focal_haplotype * Social_haplotype + (1|Strain) + (1|Block)
female_hurdle_model <- glmmTMB(Maternal_total_offspring ~ Social_haplotype * Focal_haplotype + (1|Strain) + (1|Block), data = female_reproductive_output, family = list(family="truncated_nbinom1",link="log"), ziformula = ~., na.action = na.fail, REML = FALSE)
Table S8: Evaluation of the female reproductive output model. All possible models were evaluated from the global model that included an interaction between focal haplotype and social haplotype and the random factors strain and block. As there was no clear top model, the final model was calculated via model averaging. The zero-inflated results relate to whether a female produced any offspring, while the conditional results relate to the number of offspring produced by fertile females.
# Compare all possible combinations of models (from the global model)
if(file.exists("female_dredge.rds")){ # If already done, just load the results
female_dredge <- readRDS("female_dredge.rds")
} else {female_dredge <- dredge(female_hurdle_model) # If not already done, run all the models and save the results
lapply(c("female_dredge"), save_it)
}
female_table <- subset(female_dredge, delta < 6, recalc.weights = FALSE) %>% as.data.frame()
names(female_table)[names(female_table) == "cond((Int))"] <- "Conditional intercept"
names(female_table)[names(female_table) == "zi((Int))"] <- "Zero-inflated intercept"
names(female_table)[names(female_table) == "disp((Int))"] <- "Dispersion factor intercept"
names(female_table)[names(female_table) == "cond(Focal_haplotype)"] <- "Conditional (Focal haplotype)"
names(female_table)[names(female_table) == "cond(Social_haplotype)"] <- "Conditional (Social haplotype)"
names(female_table)[names(female_table) == "cond(Focal_haplotype:Social_haplotype)"] <- "Conditional (Focal haplotype x Social haplotype)"
names(female_table)[names(female_table) == "zi(Focal_haplotype)"] <- "Zero-inflated (Focal haplotype)"
names(female_table)[names(female_table) == "zi(Social_haplotype)"] <- "Zero-inflated (Social haplotype)"
names(female_table)[names(female_table) == "zi(Focal_haplotype:Social_haplotype)"] <- "Zero-inflated (Focal haplotype x Social haplotype)"
names(female_table)[names(female_table) == "df"] <- "Degrees of freedom"
names(female_table)[names(female_table) == "logLik"] <- "Log likelihood"
names(female_table)[names(female_table) == "AICc"] <- "AICc"
names(female_table)[names(female_table) == "delta"] <- "Delta"
names(female_table)[names(female_table) == "weight"] <- "Weight"
pander(female_table, split.cell = 40, split.table = Inf)
Conditional intercept | Zero-inflated intercept | Dispersion factor intercept | Conditional (Focal haplotype) | Conditional (Social haplotype) | Conditional (Focal haplotype x Social haplotype) | Zero-inflated (Focal haplotype) | Zero-inflated (Social haplotype) | Zero-inflated (Focal haplotype x Social haplotype) | Degrees of freedom | Log likelihood | AICc | Delta | Weight | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
18 | 3.932 | -1.245 | + | + | NA | NA | NA | + | NA | 15 | -1546 | 3124 | 0 | 0.5844 |
17 | 3.839 | -1.245 | + | NA | NA | NA | NA | + | NA | 11 | -1552 | 3126 | 2.057 | 0.209 |
2 | 3.932 | -0.783 | + | + | NA | NA | NA | NA | NA | 11 | -1553 | 3128 | 4.256 | 0.06959 |
26 | 3.932 | -1.156 | + | + | NA | NA | + | + | NA | 19 | -1545 | 3129 | 4.796 | 0.05313 |
\(~\)
Relative variable importance for each of the predictors and interactions in the female reproductive output model set.
# present relative variable importance in a table
sw(female_dredge) %>%
as.data.frame() %>%
pander(split.cell = 40, split.table = Inf, round = 3, col.names = "RVI")
RVI | |
---|---|
zi(Social_haplotype) | 0.895 |
cond(Focal_haplotype) | 0.736 |
zi(Focal_haplotype) | 0.086 |
cond(Social_haplotype) | 0.031 |
zi(Focal_haplotype:Social_haplotype) | 0 |
cond(Focal_haplotype:Social_haplotype) | 0 |
\(~\)
Zi (zero-hurdle requirement) and conditional (after hurdle) model coefficients, standard error and 95% confidence limits listed in Table 1 are shown for the female offspring production averaged model. Bold rows indicate significant effects.
# We need to create the top_survival_models object and average from that so that we can get mean estimates successfully using predict()
top_female_models <- get.models(female_dredge, subset = delta < 6)
female_avgm <- model.avg(top_female_models)
# extract useful info
Female_CIs <- confint(female_avgm) %>% as.data.frame()
Female_estimate <- coefTable(female_avgm) %>% as.data.frame()
Female_p_values <- summary(female_avgm)$coefmat.subset[, 5] %>% as.data.frame() %>% rename(p = ".")
Female_model_avg <- data.frame(Female_estimate, Female_CIs, Female_p_values) %>% select(Estimate, Std..Error, X2.5.., X97.5.., p)
row.names(Female_model_avg) <- c("Conditional intercept", "Conditional focal haplotype: Brownsville", "Conditional focal haplotype: Dahomey", "Conditional focal haplotype: Israel", "Conditional focal haplotype: Sweden", "Zi intercept", "Zi social haplotype: Brownsville", "Zi social haplotype: Dahomey", "Zi social haplotype: Israel", "Zi social haplotype: Sweden", "Zi focal haplotype: Brownsville", "Zi focal haplotype: Dahomey", "Zi focal haplotype: Israel", "Zi focal haplotype: Sweden")
names(Female_model_avg)[names(Female_model_avg) == "Estimate"] <- "Conditional average estimate"
names(Female_model_avg)[names(Female_model_avg) == "Std..Error"] <- "Standard Error"
names(Female_model_avg)[names(Female_model_avg) == "X2.5.."] <- "2.5% Interval"
names(Female_model_avg)[names(Female_model_avg) == "X97.5.."] <- "97.5% Interval"
Female_model_avg %>%
pander(split.cell = 40, split.table = Inf, emphasize.strong.rows = c(2, 5, 9), round = 3)
Conditional average estimate | Standard Error | 2.5% Interval | 97.5% Interval | p | |
---|---|---|---|---|---|
Conditional intercept | 3.911 | 0.076 | 3.762 | 4.059 | 0 |
Conditional focal haplotype: Brownsville | -0.191 | 0.08 | -0.347 | -0.035 | 0.016 |
Conditional focal haplotype: Dahomey | -0.084 | 0.076 | -0.234 | 0.065 | 0.27 |
Conditional focal haplotype: Israel | -0.005 | 0.081 | -0.163 | 0.152 | 0.947 |
Conditional focal haplotype: Sweden | -0.213 | 0.083 | -0.377 | -0.049 | 0.011 |
Zi intercept | -1.205 | 0.285 | -1.764 | -0.645 | 0 |
Zi social haplotype: Brownsville | 0.552 | 0.359 | -0.151 | 1.255 | 0.124 |
Zi social haplotype: Dahomey | 0.188 | 0.353 | -0.504 | 0.88 | 0.595 |
Zi social haplotype: Israel | 1.051 | 0.335 | 0.395 | 1.707 | 0.002 |
Zi social haplotype: Sweden | 0.371 | 0.361 | -0.337 | 1.079 | 0.305 |
Zi focal haplotype: Brownsville | 0.003 | 0.325 | -0.635 | 0.641 | 0.993 |
Zi focal haplotype: Dahomey | -0.28 | 0.333 | -0.933 | 0.373 | 0.401 |
Zi focal haplotype: Israel | 0.214 | 0.327 | -0.427 | 0.855 | 0.513 |
Zi focal haplotype: Sweden | -0.396 | 0.364 | -1.109 | 0.318 | 0.277 |
\(~\)
# Plotting with model predictions
# predict.averaging does not return predictions for the conditional estimates (i.e. model coefficients averaged over models that contain the relevant predictor, rather than over the full specified subset). To predict mean estimates for each categorical variable, I can get these model averaged estimates by manually specifying the models I want to be averaged. These are used only for plotting.
# First average models that contain the predictor focal haplotype in the Zi formula. These were found by inspection of the top model list above.
focal_female_zi_models <- get.models(female_dredge, subset = "26")
# Note that only model "26' contains focal haplotype in the Zi formula. No averaging takes place and estimates are derived straight from this model. The conditional averaged estimates from the female_avgm object are identical to the estimates in model "26".
# fit model "26"
focal_zi_female_avg <- glmmTMB(Maternal_total_offspring ~ Focal_haplotype + (1|Strain) + (1|Block), data = female_reproductive_output, family = list(family="truncated_nbinom1",link="log"), ziformula = ~ Focal_haplotype + Social_haplotype + (1|Strain) + (1|Block), na.action = na.fail, REML = FALSE)
# Now average models that contain the social haplotype predictor in the Zi formula.
social_female_zi_models <- get.models(female_dredge, subset = c("18", "17", "26"))
social_zi_female_avg <- model.avg(social_female_zi_models)
# The conditional averaged estimates from the female_avgm object are identical to the zi social haplotype estimates from the "full model "social_zi_female_avg" object.
# Now average models that contain the focal haplotype predictor in the conditional formula.
focal_female_con_models <- get.models(female_dredge, subset = c("18", "2", "26"))
focal_con_female_avg <- model.avg(focal_female_con_models)
# Estimates match female_avg
# Make a new dataframe, for which we will derive predictions. It's the same as the old data, except that we set Focal haplotype, block and duplicate to the same value for all observations. The re.form = NA argument sets random effects to 0, meaning population means are calculated.
new_data <- female_reproductive_output %>%
ungroup() %>%
select(Focal_haplotype, Strain, Block) %>%
mutate(Social_haplotype = "Barcelona", Strain = "Barcelona 1", Block = "1") %>%
distinct()
# First lets get predictions for the average number of offspring produced by females that produced at least one progeny, split by focal haplotype.
pred <- predict(focal_con_female_avg, se.fit = TRUE, type = "conditional", re.form = NA, new_data) %>%
unlist() %>%
as.data.frame()
pred1 <- pred %>%
slice(1:5) %>%
rename(mean_estimate = ".")
pred2 <- pred %>%
slice(6:10) %>%
rename(SE = ".")
pred <- cbind(new_data, pred1, pred2) %>%
mutate(Upper = mean_estimate + SE,
Lower = mean_estimate - SE) %>%
rename(Maternal_total_offspring = mean_estimate)
# Load the data for each individual female that produced offspring so that this can be plotted
female_cond_plot_data <- female_reproductive_output %>%
filter(Maternal_total_offspring != 0) %>%
ungroup() %>%
select(Individual, Focal_haplotype, Maternal_total_offspring)
# Now lets plot these predictions
female_focal_cond_plot <- female_cond_plot_data %>%
ggplot(aes(x = Focal_haplotype, y = Maternal_total_offspring, fill = Focal_haplotype, colour = Focal_haplotype)) +
geom_quasirandom(data = female_cond_plot_data, width = 0.3, size = 2, alpha = 0.5, pch = 21, colour = 'grey26') +
scale_fill_manual(values = c("Barcelona" = "#fcde9c", "Brownsville" = "#f58670", "Dahomey" = "#e34f6f", "Israel" = "#d72d7c" , "Sweden" = "#7c1d6f")) +
geom_point(data = pred, aes(x = Focal_haplotype, y = Maternal_total_offspring), size = 3, colour='black') +
geom_errorbar(data = pred, aes(x = Focal_haplotype, ymax = Upper, ymin = Lower, width = 0), colour = "black") +
labs(x = "Female mtDNA haplotype", y = "Number of offspring produced by females") +
theme_minimal() +
theme(legend.position = "none") +
theme(panel.grid.major.x = element_blank())
# Now lets get the Zi predictions for focal haplotype
pred_ZI <- predict(focal_zi_female_avg, se.fit = TRUE, type = "zprob", re.form = NA, new_data) %>%
unlist() %>%
as.data.frame()
pred_ZI_1 <- pred_ZI %>%
slice(1:5) %>%
rename(mean_estimate = ".")
pred_ZI_2 <- pred_ZI %>%
slice(6:10) %>%
rename(SE = ".")
pred_focal_ZI <- cbind(new_data, pred_ZI_1, pred_ZI_2) %>%
transmute(Focal_haplotype, Strain, Block, Social_haplotype, mean_estimate = 1 - mean_estimate, SE) %>%
mutate(Upper = mean_estimate + SE,
Lower = mean_estimate - SE)
# Plot
female_focal_zi_plot <- pred_focal_ZI %>%
ggplot(aes(x = Focal_haplotype, y = mean_estimate, fill = Focal_haplotype, colour = Focal_haplotype)) +
geom_errorbar(aes(x = Focal_haplotype, ymax = Upper, ymin = Lower, width = 0), colour = "black") +
geom_point(aes(x = Focal_haplotype, y = mean_estimate), size = 4, pch =21, colour='grey26') +
scale_fill_manual(values = c("Barcelona" = "#fcde9c", "Brownsville" = "#f58670", "Dahomey" = "#e34f6f", "Israel" = "#d72d7c" , "Sweden" = "#7c1d6f")) +
labs(x = "Female mtDNA haplotype", y = "Proportion of females producing offspring") +
ylim(0.4, 1) +
theme_minimal() +
theme(legend.position = "none") +
theme(panel.grid.major.x = element_blank())
# Now create the newdata for social haplotype predictions
new_data_social <- female_reproductive_output %>%
ungroup() %>%
select(Social_haplotype, Strain, Block) %>%
mutate(Focal_haplotype = "Barcelona", Strain = "Barcelona 1", Block = "1") %>%
distinct()
# Get zi social haplotype predictions
pred_social_ZI <- predict(social_zi_female_avg, se.fit = TRUE, type = "zprob", re.form = NA, new_data_social) %>%
unlist() %>%
as.data.frame()
pred_ZI_social_1 <- pred_social_ZI %>%
slice(1:5) %>%
rename(mean_estimate = ".")
pred_ZI_social_2 <- pred_social_ZI %>%
slice(6:10) %>%
rename(SE = ".")
pred_focal_ZI_social <- cbind(new_data_social, pred_ZI_social_1, pred_ZI_social_2) %>%
transmute(Social_haplotype, Strain, Block, Focal_haplotype, mean_estimate = 1 - mean_estimate, SE) %>%
mutate(Upper = mean_estimate + SE,
Lower = mean_estimate - SE)
# Plot
female_social_zi_plot <- pred_focal_ZI_social %>%
ggplot(aes(x = Social_haplotype, y = mean_estimate, fill = Social_haplotype, colour = Social_haplotype)) +
geom_errorbar(aes(x = Social_haplotype, ymax = Upper, ymin = Lower, width = 0), colour = "black") +
geom_point(aes(x = Social_haplotype, y = mean_estimate), size = 4, pch =21, colour='grey26') +
scale_fill_manual(values = c("Barcelona" = "#fcde9c", "Brownsville" = "#f58670", "Dahomey" = "#e34f6f", "Israel" = "#d72d7c" , "Sweden" = "#7c1d6f")) +
labs(x = "Male mtDNA haplotype", y = "Proportion of females producing offspring") +
ylim(0.4, 1) +
theme_minimal() +
theme(legend.position = "none") +
theme(panel.grid.major.x = element_blank())
# Lets calculate mean estimates from the raw data for the number of offspring produced by females split by social haplotype. We can't use model predictions here because social haplotype is not retained in the conditional part of the model
female_reproductive_output_cond <- female_reproductive_output %>%
filter(Maternal_total_offspring != 0)
female_social_raw_cond <- female_reproductive_output_cond %>%
dplyr::group_by(Social_haplotype) %>%
dplyr::summarise(Mean_offspring = sum(Maternal_total_offspring) / length(Maternal_total_offspring), Lower = (Mean_offspring - SE(Maternal_total_offspring)), Upper = (Mean_offspring + SE(Maternal_total_offspring)), n = n()) %>%
rename(Maternal_total_offspring = Mean_offspring)
female_social_cond_plot <- female_reproductive_output_cond %>%
ggplot(aes(x = Social_haplotype, y = Maternal_total_offspring, fill = Social_haplotype, colour = Social_haplotype)) +
geom_quasirandom(data = female_reproductive_output_cond, width = 0.3, size = 2, alpha = 0.5, pch = 21, colour = 'grey26') +
scale_fill_manual(values = c("Barcelona" = "#fcde9c", "Brownsville" = "#f58670", "Dahomey" = "#e34f6f", "Israel" = "#d72d7c" , "Sweden" = "#7c1d6f")) +
geom_point(data = female_social_raw_cond, aes(x = Social_haplotype, y = Maternal_total_offspring), size = 3, colour='black') +
geom_errorbar(data = female_social_raw_cond, aes(x = Social_haplotype, ymax = Upper, ymin = Lower, width = 0), colour = "black") +
labs(x = "Male mtDNA haplotype", y = "Number of offspring produced by females") +
theme_minimal() +
theme(legend.position = "none") +
theme(panel.grid.major.x = element_blank())
ggarrange(female_focal_zi_plot, female_social_zi_plot, female_focal_cond_plot, female_social_cond_plot, labels = c("a", "b", "c", "d"))
Figure 1: mtDNA directly and indirectly affects female fitness. Panels a and b show model predictions of the mean proportion of females that produced offspring (the zero-inflated or hurdle component of the model) across a female focal mtDNA haplotypes and b social male mtDNA haplotypes. Panels c and d show the direct and indirect effect of mtDNA on the number of offspring produced by a female. Black points show model predictions of the mean for each haplotype in c and mean estimates from the raw data in d, while coloured points represent offspring produced by individual females. Model predictions were not calculated for d because social haplotype was not retained as a predictor for the conditional component of the averaged hurdle model. Error bars depict standard errors in all plots.
\(~\)
Our measure of male fitness involves both pre- and post-copulatory competitive ability; that is we assess in one measure the combination of 1) the ability of a male to inseminate a female in the presence of another male and 2) the competitive ability of his sperm within females that have been inseminated by another male.
We analyse male fitness as the proportion of offspring produced by mt-strain males competing against a standard bw male competitor. The data contains many 0 or 1 values - corresponding to a monopoly of female fertilisation by one of the males. To model this process we specify a beta-binomial distribution, which allows greater flexibility when modelling the distribution of the response.
The Brownsville haplotype renders males sterile alongside the w1118 nuclear background and sub-fertile alongside all other tested backgrounds. In our experiment, we find that Brownsville males are able to produce offspring but to a very limited capacity. Due to this, our model is unable to produce reliable estimates when the interaction between focal and social haplotype is included. We do not include the interaction in the full model.
We include an additional random effect - MALE ID - in the model to account for repeated measures of each pair of focal and rival males.
(Focal_male_offspring, bw_offspring) ~ Focal_haplotype + Social_haplotype + (1|Strain) + (1|Block) + (1|Male_ID)
response <- cbind(Male_fitness$Focal_male_offspring, Male_fitness$bw_male_offspring)
Male_fitness <-
Male_fitness %>%
rename(Male_ID = Individual)
male_model <- glmmTMB(response ~ Focal_haplotype + Social_haplotype + (1|Block) + (1|Strain) + (1|Male_ID), data = Male_fitness, family = "betabinomial", na.action = na.fail)
Table S9: Evaluation of the male adult fitness model. All possible models were evaluated from the global model that included focal haplotype, social haplotype and the random factors strain, block and individual. As there was no clear top model, the final model was calculated via model averaging.
male_dredge <- dredge(male_model)
Male_table <- subset(male_dredge, delta < 6) %>% as.data.frame()
names(Male_table)[names(Male_table) == "(Intercept)"] <- "Intercept"
names(Male_table)[names(Male_table) == "Focal_haplotype"] <- "Focal haplotype"
names(Male_table)[names(Male_table) == "Social_haplotype"] <- "Social haplotype"
names(Male_table)[names(Male_table) == "Focal_haplotype:Social_haplotype"] <- "Focal haplotype x Social haplotype"
names(Male_table)[names(Male_table) == "df"] <- "Degrees of freedom"
names(Male_table)[names(Male_table) == "logLik"] <- "Log likelihood"
names(Male_table)[names(Male_table) == "AICc"] <- "AICc"
names(Male_table)[names(Male_table) == "delta"] <- "Delta"
names(Male_table)[names(Male_table) == "weight"] <- "Weight"
pander(Male_table, split.cell = 40, split.table = Inf)
cond((Int)) | disp((Int)) | cond(Focal_haplotype) | cond(Social_haplotype) | Degrees of freedom | Log likelihood | AICc | Delta | Weight | |
---|---|---|---|---|---|---|---|---|---|
2 | -0.3087 | + | + | NA | 9 | -835.2 | 1689 | 0 | 0.906 |
4 | -0.1068 | + | + | + | 13 | -833.2 | 1693 | 4.531 | 0.09401 |
\(~\)
Relative variable importance for each of the predictors and interactions in the male reproductive fitness model set.
# present relative variable importance in a table
sw(male_dredge) %>%
as.data.frame() %>%
pander(split.cell = 40, split.table = Inf, round = 3, col.names = "RVI")
RVI | |
---|---|
cond(Focal_haplotype) | 0.994 |
cond(Social_haplotype) | 0.094 |
\(~\)
Model coefficients, standard error and 95% confidence limits listed in Table 2 are shown for the male adult fitness averaged model. Bold rows indicate significant effects.
# Model average
top_male_models <- get.models(male_dredge, subset = delta < 6)
male_avgm <- model.avg(top_male_models)
# extract useful information
# summary(model.avg(male_binary_dredge, subset = delta < 6))
Male_CIs <- confint(male_avgm) %>% as.data.frame()
Male_estimate <- coefTable(male_avgm) %>% as.data.frame()
Male_p_values <- summary(male_avgm)$coefmat.subset[, 5] %>% as.data.frame() %>% rename(p = ".")
Male_model_avg <- data.frame(Male_estimate, Male_CIs, Male_p_values) %>% select(Estimate, Std..Error, X2.5.., X97.5.., p)
row.names(Male_model_avg) <- c("Intercept", "Focal haplotype: Brownsville", "Focal haplotype: Dahomey", "Focal haplotype: Israel", "Focal haplotype: Sweden", "Social haplotype: Brownsville", "Social haplotype: Dahomey", "Social haplotype: Israel", "Social haplotype: Sweden")
names(Male_model_avg)[names(Male_model_avg) == "Estimate"] <- "Conditional average estimate"
names(Male_model_avg)[names(Male_model_avg) == "Std..Error"] <- "Standard Error"
names(Male_model_avg)[names(Male_model_avg) == "X2.5.."] <- "2.5% Interval"
names(Male_model_avg)[names(Male_model_avg) == "X97.5.."] <- "97.5% Interval"
pander(Male_model_avg, split.cell = 40, split.table = Inf, emphasize.strong.rows = 2, round = 3)
Conditional average estimate | Standard Error | 2.5% Interval | 97.5% Interval | p | |
---|---|---|---|---|---|
Intercept | -0.29 | 0.276 | -0.83 | 0.251 | 0.294 |
Focal haplotype: Brownsville | -2.614 | 0.479 | -3.552 | -1.676 | 0 |
Focal haplotype: Dahomey | -0.355 | 0.285 | -0.914 | 0.205 | 0.214 |
Focal haplotype: Israel | -0.075 | 0.314 | -0.691 | 0.54 | 0.81 |
Focal haplotype: Sweden | 0.143 | 0.303 | -0.452 | 0.737 | 0.638 |
Social haplotype: Brownsville | -0.546 | 0.321 | -1.175 | 0.084 | 0.089 |
Social haplotype: Dahomey | -0.065 | 0.326 | -0.704 | 0.574 | 0.841 |
Social haplotype: Israel | -0.233 | 0.316 | -0.852 | 0.385 | 0.46 |
Social haplotype: Sweden | -0.066 | 0.323 | -0.699 | 0.568 | 0.839 |
\(~\)
# predict.averaging does not return predictions for the conditional estimates (i.e. model coefficients averaged over models that contain the relevant predictor, rather than over the full specified subset). To predict mean estimates for each categorical variable, I can get these model averaged estimates by manually specifying the models I want to be avergaged. These are used only for plotting.
# First average models that contain the predictor focal haplotype. These were found by inspection of the top model list above.
focal_male_models <- get.models(male_dredge, subset = c("2", "4"))
focal_male_avg <- model.avg(focal_male_models)
# Note that the conditional averaged estimates from the male_avgm object are identical to the full averaged estimates for the focal_male_avg object for focal haplotype.
# Now average models that contain the social haplotype predictor.
social_male_models <- get.models(male_dredge, subset = c("4"))
# Note that there is only one model (the original full model) that contains social haplotype in the < 6 delta subset, so estimates are calculated directly from this model - no averaging occurs. The conditional averaged estimates from the male_avgm object are identical to the estimates from the full model.
# Focal new data
new_data_male <- Male_fitness %>%
ungroup() %>%
select(Focal_haplotype, Block, Strain, Male_ID) %>%
mutate(Social_haplotype = "Barcelona", Block = "1", Strain = "Barcelona 1", Male_ID = "4") %>%
distinct()
pred_male_focal <- predict(focal_male_avg, newdata = new_data_male, type = "response", se.fit = TRUE, re.form = NA) %>%
unlist() %>%
as.data.frame()
pred_male_focal_1 <- pred_male_focal %>%
slice(1:5) %>%
rename(mean_estimate = ".")
pred_male_focal_2 <- pred_male_focal %>%
slice(6:10) %>%
rename(SE = ".")
pred_focal_male <- cbind(new_data_male, pred_male_focal_1, pred_male_focal_2) %>%
rename(Proportion_focal = mean_estimate) %>%
mutate(Upper = Proportion_focal + SE,
Lower = Proportion_focal - SE)
# Plot
Male_focal_plot <- Male_fitness %>%
ggplot(aes(x = Focal_haplotype, y = Proportion_focal, fill = Focal_haplotype, colour = Focal_haplotype)) +
geom_quasirandom(data = Male_fitness, width = 0.3, alpha = 0.3, pch = 21, colour = 'grey21', aes(size = Offspring_counted)) +
scale_size_continuous(range = c(0.5, 6), labels = NULL, breaks = c(20, 40, 60, 80, 100, 120)) +
scale_fill_manual(values = c("Barcelona" = "#fcde9c", "Brownsville" = "#f58670", "Dahomey" = "#e34f6f", "Israel" = "#d72d7c" , "Sweden" = "#7c1d6f")) +
geom_point(data = pred_focal_male, aes(x = Focal_haplotype, y = Proportion_focal), size = 3, colour='black') +
geom_errorbar(data = pred_focal_male, aes(x = Focal_haplotype, ymax = Upper, ymin = Lower, width = 0), colour = "black") +
labs(x = "Male mtDNA haplotype", y = "Proportion of offspring sired by focal male") +
theme_minimal() +
theme(legend.position = "none") +
theme(panel.grid.major.x = element_blank())
# Social new data
new_data_social_male <- Male_fitness %>%
ungroup() %>%
select(Social_haplotype, Block, Strain, Male_ID) %>%
mutate(Focal_haplotype = "Barcelona", Block = "1", Strain = "Barcelona 1", Male_ID = "4") %>%
distinct()
# predict.averaging works over the full average rather than the conditional average that we present. I use a workaround where I create another model average object but only using the models in the < 6 delta subset that include social haplotype. Here only two models make the cut - the full model is the only one containing social haplotype as a predictor so no averaging is neccessary. Plug the full model into the predict function.
pred_male_social <- predict(male_model, newdata = new_data_social_male, type = "response", se.fit = TRUE, re.form = NA) %>%
unlist() %>%
as.data.frame()
pred_male_social_1 <- pred_male_social %>%
slice(1:5) %>%
rename(mean_estimate = ".")
pred_male_social_2 <- pred_male_social %>%
slice(6:10) %>%
rename(SE = ".")
pred_male_social <- cbind(new_data_social_male, pred_male_social_1, pred_male_social_2) %>%
rename(Proportion_focal = mean_estimate) %>%
mutate(Upper = Proportion_focal + SE,
Lower = Proportion_focal - SE)
# Plot
Male_social_plot <- Male_fitness %>%
ggplot(aes(x = Social_haplotype, y = Proportion_focal, fill = Social_haplotype, colour = Social_haplotype)) +
geom_quasirandom(data = Male_fitness, width = 0.3, alpha = 0.3, pch = 21, colour = 'grey21', aes(size = Offspring_counted)) +
scale_size_continuous(range = c(0.5, 6), labels = NULL, breaks = c(20, 40, 60, 80, 100, 120)) +
scale_fill_manual(values = c("Barcelona" = "#fcde9c", "Brownsville" = "#f58670", "Dahomey" = "#e34f6f", "Israel" = "#d72d7c" , "Sweden" = "#7c1d6f")) +
geom_point(data = pred_male_social, aes(x = Social_haplotype, y = Proportion_focal), size = 3, colour='black') +
geom_errorbar(data = pred_male_social, aes(x = Social_haplotype, ymax = Upper, ymin = Lower, width = 0), colour = "black") +
labs(x = "Female mtDNA haplotype", y = "Proportion of offspring sired by focal male") +
theme_minimal() +
theme(legend.position = "none") +
theme(panel.grid.major.x = element_blank())
ggarrange(Male_focal_plot, Male_social_plot, labels = c("a", "b"))
Figure 2: The proportion of offspring produced by mt-strain males competing with standard bw males. a shows the direct effect of mtDNA on male fitness. b shows the indirect genetic effect of female mtDNA on male fitness. Coloured points represent individual males, with larger points indicating a higher number of offspring produced in the vial (sired by either male). Black points show model predictions of the mean proportion of offspring sired by the mt-strain male, with associated standard errors.
\(~\)
For the purposes of completeness, transparency and data archiving, we include the raw data in this report.
Table S10: the raw data-set used in the present study, with NA values resulting from data collection mistakes removed (i.e. two females placed in competitive environment, no value recorded for whether the fly survived, flies that escaped during the experiment etc.).
kable(fitness_data %>% filter(!is.na(Survived)), "html") %>%
kable_styling() %>%
scroll_box(width = "100%", height = "800px")
Individual | Block | Strain | Dyad_ID | Sex | Focal_haplotype | Social_haplotype | Survived | Dev_time | Wing_length | Maternal_female_offspring | Maternal_male_offspring | Maternal_total_offspring | Paternal_focal_offspring | Paternal_bw_offspring | Proportion_focal |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | Barcelona 1 | 1 | F | Barcelona | Barcelona | 1 | NA | NA | 35 | 24 | 59 | NA | NA | NA |
2 | 1 | Barcelona 1 | 1 | M | Barcelona | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
3 | 1 | Brownsville 1 | 2 | F | Brownsville | Barcelona | 1 | 249 | NA | 36 | 45 | 81 | NA | NA | NA |
4 | 1 | Barcelona 1 | 2 | M | Barcelona | Brownsville | 1 | NA | NA | NA | NA | NA | 0 | 41 | 0.0000000 |
5 | 1 | Dahomey 1 | 3 | F | Dahomey | Barcelona | 1 | 249 | NA | 17 | 23 | 40 | NA | NA | NA |
6 | 1 | Barcelona 1 | 3 | M | Barcelona | Dahomey | 1 | 242 | NA | NA | NA | NA | 42 | 0 | 1.0000000 |
7 | 1 | Israel 1 | 4 | F | Israel | Barcelona | 1 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
8 | 1 | Barcelona 1 | 4 | M | Barcelona | Israel | 1 | 242 | NA | NA | NA | NA | 32 | 26 | 0.5517241 |
9 | 1 | Sweden 1 | 5 | F | Sweden | Barcelona | 1 | NA | NA | 7 | 15 | 22 | NA | NA | NA |
10 | 1 | Barcelona 1 | 5 | M | Barcelona | Sweden | 1 | 267 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
11 | 1 | Barcelona 1 | 6 | F | Barcelona | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
12 | 1 | Brownsville 1 | 6 | M | Brownsville | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
15 | 1 | Dahomey 1 | 8 | F | Dahomey | Brownsville | 1 | 242 | NA | 23 | 31 | 54 | NA | NA | NA |
16 | 1 | Brownsville 1 | 8 | M | Brownsville | Dahomey | 1 | 245 | NA | NA | NA | NA | 0 | 63 | 0.0000000 |
17 | 1 | Israel 1 | 9 | F | Israel | Brownsville | 1 | 243 | NA | NA | NA | NA | NA | NA | NA |
18 | 1 | Brownsville 1 | 9 | M | Brownsville | Israel | 1 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
19 | 1 | Sweden 1 | 10 | F | Sweden | Brownsville | 1 | 266 | NA | 26 | 39 | 65 | NA | NA | NA |
20 | 1 | Brownsville 1 | 10 | M | Brownsville | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
21 | 1 | Barcelona 1 | 11 | F | Barcelona | Dahomey | 1 | NA | NA | 8 | 21 | 29 | NA | NA | NA |
22 | 1 | Dahomey 1 | 11 | M | Dahomey | Barcelona | 1 | 267 | NA | NA | NA | NA | 11 | 26 | 0.2972973 |
23 | 1 | Brownsville 1 | 12 | F | Brownsville | Dahomey | 1 | 242 | NA | 11 | 22 | 33 | NA | NA | NA |
24 | 1 | Dahomey 1 | 12 | M | Dahomey | Brownsville | 1 | NA | NA | NA | NA | NA | 0 | 13 | 0.0000000 |
25 | 1 | Dahomey 1 | 13 | F | Dahomey | Dahomey | 1 | 265 | NA | NA | NA | NA | NA | NA | NA |
26 | 1 | Dahomey 1 | 13 | M | Dahomey | Dahomey | 1 | NA | NA | NA | NA | NA | 128 | 0 | 1.0000000 |
27 | 1 | Israel 1 | 14 | F | Israel | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
28 | 1 | Dahomey 1 | 14 | M | Dahomey | Israel | 1 | 248 | NA | NA | NA | NA | 163 | 0 | 1.0000000 |
29 | 1 | Sweden 1 | 15 | F | Sweden | Dahomey | 1 | 245 | NA | 16 | 27 | 43 | NA | NA | NA |
30 | 1 | Dahomey 1 | 15 | M | Dahomey | Sweden | 1 | 248 | NA | NA | NA | NA | 105 | 0 | 1.0000000 |
31 | 1 | Barcelona 1 | 16 | F | Barcelona | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
32 | 1 | Israel 1 | 16 | M | Israel | Barcelona | 1 | 249 | NA | NA | NA | NA | 25 | 25 | 0.5000000 |
38 | 1 | Israel 1 | 19 | M | Israel | Israel | 1 | 243 | NA | NA | NA | NA | 0 | 58 | 0.0000000 |
41 | 1 | Barcelona 1 | 21 | F | Barcelona | Sweden | 1 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
42 | 1 | Sweden 1 | 21 | M | Sweden | Barcelona | 1 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
43 | 1 | Brownsville 1 | 22 | F | Brownsville | Sweden | 1 | 270 | NA | 31 | 22 | 53 | NA | NA | NA |
44 | 1 | Sweden 1 | 22 | M | Sweden | Brownsville | 1 | 267 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
45 | 1 | Dahomey 1 | 23 | F | Dahomey | Sweden | 1 | NA | NA | 23 | 32 | 55 | NA | NA | NA |
46 | 1 | Sweden 1 | 23 | M | Sweden | Dahomey | 1 | 242 | NA | NA | NA | NA | 0 | 52 | 0.0000000 |
47 | 1 | Israel 1 | 24 | F | Israel | Sweden | 1 | NA | NA | 18 | 22 | 40 | NA | NA | NA |
48 | 1 | Sweden 1 | 24 | M | Sweden | Israel | 1 | NA | NA | NA | NA | NA | 91 | 14 | 0.8666667 |
49 | 1 | Sweden 1 | 25 | F | Sweden | Sweden | 1 | 273 | NA | 18 | 19 | 37 | NA | NA | NA |
50 | 1 | Sweden 1 | 25 | M | Sweden | Sweden | 1 | NA | NA | NA | NA | NA | 68 | 4 | 0.9444444 |
51 | 1 | Barcelona 1 | 26 | F | Barcelona | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
52 | 1 | Barcelona 1 | 26 | M | Barcelona | Barcelona | 1 | 245 | NA | NA | NA | NA | 138 | 0 | 1.0000000 |
53 | 1 | Brownsville 1 | 27 | F | Brownsville | Barcelona | 1 | 269 | NA | 9 | 17 | 26 | NA | NA | NA |
54 | 1 | Barcelona 1 | 27 | M | Barcelona | Brownsville | 1 | 269 | NA | NA | NA | NA | 74 | 0 | 1.0000000 |
55 | 1 | Dahomey 1 | 28 | F | Dahomey | Barcelona | 1 | 267 | NA | 25 | 19 | 44 | NA | NA | NA |
56 | 1 | Barcelona 1 | 28 | M | Barcelona | Dahomey | 1 | 283 | NA | NA | NA | NA | 0 | 25 | 0.0000000 |
57 | 1 | Israel 1 | 29 | F | Israel | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
58 | 1 | Barcelona 1 | 29 | M | Barcelona | Israel | 1 | 288 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
59 | 1 | Sweden 1 | 30 | F | Sweden | Barcelona | 1 | 283 | NA | 28 | 19 | 47 | NA | NA | NA |
60 | 1 | Barcelona 1 | 30 | M | Barcelona | Sweden | 1 | 283 | NA | NA | NA | NA | 70 | 46 | 0.6034483 |
61 | 1 | Barcelona 1 | 31 | F | Barcelona | Brownsville | 1 | 269 | NA | 0 | 0 | 0 | NA | NA | NA |
62 | 1 | Brownsville 1 | 31 | M | Brownsville | Barcelona | 1 | NA | NA | NA | NA | NA | 0 | 32 | 0.0000000 |
63 | 1 | Brownsville 1 | 32 | F | Brownsville | Brownsville | 1 | NA | NA | 27 | 22 | 49 | NA | NA | NA |
64 | 1 | Brownsville 1 | 32 | M | Brownsville | Brownsville | 1 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
65 | 1 | Dahomey 1 | 33 | F | Dahomey | Brownsville | 1 | 270 | NA | 13 | 16 | 29 | NA | NA | NA |
66 | 1 | Brownsville 1 | 33 | M | Brownsville | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
67 | 1 | Israel 1 | 34 | F | Israel | Brownsville | 1 | 273 | NA | 0 | 0 | 0 | NA | NA | NA |
68 | 1 | Brownsville 1 | 34 | M | Brownsville | Israel | 1 | 270 | NA | NA | NA | NA | 0 | 52 | 0.0000000 |
69 | 1 | Sweden 1 | 35 | F | Sweden | Brownsville | 1 | 269 | NA | 9 | 10 | 19 | NA | NA | NA |
70 | 1 | Brownsville 1 | 35 | M | Brownsville | Sweden | 1 | 271 | NA | NA | NA | NA | 0 | 21 | 0.0000000 |
71 | 1 | Barcelona 1 | 36 | F | Barcelona | Dahomey | 1 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
72 | 1 | Dahomey 1 | 36 | M | Dahomey | Barcelona | 1 | 269 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
73 | 1 | Brownsville 1 | 37 | F | Brownsville | Dahomey | 1 | 243 | NA | 18 | 29 | 47 | NA | NA | NA |
74 | 1 | Dahomey 1 | 37 | M | Dahomey | Brownsville | 1 | 248 | NA | NA | NA | NA | 0 | 49 | 0.0000000 |
75 | 1 | Dahomey 1 | 38 | F | Dahomey | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
76 | 1 | Dahomey 1 | 38 | M | Dahomey | Dahomey | 1 | 251 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
77 | 1 | Israel 1 | 39 | F | Israel | Dahomey | 1 | NA | NA | 35 | 20 | 55 | NA | NA | NA |
78 | 1 | Dahomey 1 | 39 | M | Dahomey | Israel | 1 | 248 | NA | NA | NA | NA | 81 | 8 | 0.9101124 |
79 | 1 | Sweden 1 | 40 | F | Sweden | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
80 | 1 | Dahomey 1 | 40 | M | Dahomey | Sweden | 1 | 274 | NA | NA | NA | NA | 1 | 23 | 0.0416667 |
81 | 1 | Barcelona 1 | 41 | F | Barcelona | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
82 | 1 | Israel 1 | 41 | M | Israel | Barcelona | 1 | 269 | NA | NA | NA | NA | 0 | 55 | 0.0000000 |
85 | 1 | Dahomey 1 | 43 | F | Dahomey | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
86 | 1 | Israel 1 | 43 | M | Israel | Dahomey | 1 | 267 | NA | NA | NA | NA | 200 | 0 | 1.0000000 |
87 | 1 | Israel 1 | 44 | F | Israel | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
88 | 1 | Israel 1 | 44 | M | Israel | Israel | 1 | 248 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
89 | 1 | Sweden 1 | 45 | F | Sweden | Israel | 1 | 288 | NA | 0 | 0 | 0 | NA | NA | NA |
90 | 1 | Israel 1 | 45 | M | Israel | Sweden | 1 | 270 | NA | NA | NA | NA | 22 | 49 | 0.3098592 |
91 | 1 | Barcelona 1 | 46 | F | Barcelona | Sweden | 1 | NA | NA | 19 | 34 | 53 | NA | NA | NA |
92 | 1 | Sweden 1 | 46 | M | Sweden | Barcelona | 1 | NA | NA | NA | NA | NA | 75 | 0 | 1.0000000 |
93 | 1 | Brownsville 1 | 47 | F | Brownsville | Sweden | 1 | 267 | NA | 0 | 0 | 0 | NA | NA | NA |
94 | 1 | Sweden 1 | 47 | M | Sweden | Brownsville | 1 | NA | NA | NA | NA | NA | 104 | 2 | 0.9811321 |
95 | 1 | Dahomey 1 | 48 | F | Dahomey | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
96 | 1 | Sweden 1 | 48 | M | Sweden | Dahomey | 1 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
99 | 1 | Sweden 1 | 50 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
100 | 1 | Sweden 1 | 50 | M | Sweden | Sweden | 1 | NA | NA | NA | NA | NA | 47 | 0 | 1.0000000 |
101 | 1 | Barcelona 1 | 51 | F | Barcelona | Barcelona | 1 | 249 | NA | 23 | 27 | 50 | NA | NA | NA |
102 | 1 | Barcelona 1 | 51 | M | Barcelona | Barcelona | 1 | 249 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
103 | 1 | Brownsville 1 | 52 | F | Brownsville | Barcelona | 1 | 269 | NA | 0 | 0 | 0 | NA | NA | NA |
104 | 1 | Barcelona 1 | 52 | M | Barcelona | Brownsville | 1 | NA | NA | NA | NA | NA | 141 | 15 | 0.9038462 |
105 | 1 | Dahomey 1 | 53 | F | Dahomey | Barcelona | 1 | 246 | NA | 22 | 21 | 43 | NA | NA | NA |
106 | 1 | Barcelona 1 | 53 | M | Barcelona | Dahomey | 1 | NA | NA | NA | NA | NA | 3 | 27 | 0.1000000 |
107 | 1 | Israel 1 | 54 | F | Israel | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
108 | 1 | Barcelona 1 | 54 | M | Barcelona | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
109 | 1 | Sweden 1 | 55 | F | Sweden | Barcelona | 1 | NA | NA | 8 | 8 | 16 | NA | NA | NA |
110 | 1 | Barcelona 1 | 55 | M | Barcelona | Sweden | 1 | NA | NA | NA | NA | NA | 11 | 10 | 0.5238095 |
111 | 1 | Barcelona 1 | 56 | F | Barcelona | Brownsville | 1 | NA | NA | 20 | 19 | 39 | NA | NA | NA |
112 | 1 | Brownsville 1 | 56 | M | Brownsville | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
113 | 1 | Brownsville 1 | 57 | F | Brownsville | Brownsville | 1 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
114 | 1 | Brownsville 1 | 57 | M | Brownsville | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
117 | 1 | Israel 1 | 59 | F | Israel | Brownsville | 1 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
118 | 1 | Brownsville 1 | 59 | M | Brownsville | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
119 | 1 | Sweden 1 | 60 | F | Sweden | Brownsville | 1 | NA | NA | 51 | 50 | 101 | NA | NA | NA |
120 | 1 | Brownsville 1 | 60 | M | Brownsville | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
121 | 1 | Barcelona 1 | 61 | F | Barcelona | Dahomey | 1 | 248 | NA | 22 | 18 | 40 | NA | NA | NA |
122 | 1 | Dahomey 1 | 61 | M | Dahomey | Barcelona | 1 | NA | NA | NA | NA | NA | 0 | 11 | 0.0000000 |
123 | 1 | Brownsville 1 | 62 | F | Brownsville | Dahomey | 1 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
124 | 1 | Dahomey 1 | 62 | M | Dahomey | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
125 | 1 | Dahomey 1 | 63 | F | Dahomey | Dahomey | 1 | NA | NA | 23 | 22 | 45 | NA | NA | NA |
126 | 1 | Dahomey 1 | 63 | M | Dahomey | Dahomey | 1 | 274 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
127 | 1 | Israel 1 | 64 | F | Israel | Dahomey | 1 | 274 | NA | 0 | 0 | 0 | NA | NA | NA |
128 | 1 | Dahomey 1 | 64 | M | Dahomey | Israel | 1 | NA | NA | NA | NA | NA | 0 | 48 | 0.0000000 |
130 | 1 | Dahomey 1 | 65 | M | Dahomey | Sweden | 1 | NA | NA | NA | NA | NA | 0 | 95 | 0.0000000 |
133 | 1 | Brownsville 1 | 67 | F | Brownsville | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
134 | 1 | Israel 1 | 67 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
135 | 1 | Dahomey 1 | 68 | F | Dahomey | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
136 | 1 | Israel 1 | 68 | M | Israel | Dahomey | 1 | NA | NA | NA | NA | NA | 94 | 0 | 1.0000000 |
137 | 1 | Israel 1 | 69 | F | Israel | Israel | 1 | NA | NA | NA | NA | NA | NA | NA | NA |
138 | 1 | Israel 1 | 69 | M | Israel | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
141 | 1 | Barcelona 1 | 71 | F | Barcelona | Sweden | 1 | 287 | NA | 0 | 0 | 0 | NA | NA | NA |
142 | 1 | Sweden 1 | 71 | M | Sweden | Barcelona | 1 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
143 | 1 | Brownsville 1 | 72 | F | Brownsville | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
144 | 1 | Sweden 1 | 72 | M | Sweden | Brownsville | 1 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
147 | 1 | Israel 1 | 74 | F | Israel | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
148 | 1 | Sweden 1 | 74 | M | Sweden | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
149 | 1 | Sweden 1 | 75 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
150 | 1 | Sweden 1 | 75 | M | Sweden | Sweden | 1 | NA | NA | NA | NA | NA | 93 | 17 | 0.8454545 |
151 | 1 | Barcelona 2 | 76 | F | Barcelona | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
152 | 1 | Barcelona 2 | 76 | M | Barcelona | Barcelona | 1 | 267 | NA | NA | NA | NA | NA | NA | NA |
153 | 1 | Brownsville 2 | 77 | F | Brownsville | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
154 | 1 | Barcelona 2 | 77 | M | Barcelona | Brownsville | 1 | NA | NA | NA | NA | NA | 0 | 117 | 0.0000000 |
155 | 1 | Dahomey 2 | 78 | F | Dahomey | Barcelona | 1 | 243 | NA | 0 | 0 | 0 | NA | NA | NA |
156 | 1 | Barcelona 2 | 78 | M | Barcelona | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
157 | 1 | Israel 2 | 79 | F | Israel | Barcelona | 1 | 269 | NA | 5 | 8 | 13 | NA | NA | NA |
158 | 1 | Barcelona 2 | 79 | M | Barcelona | Israel | 1 | 269 | NA | NA | NA | NA | 0 | 2 | 0.0000000 |
159 | 1 | Sweden 2 | 80 | F | Sweden | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
160 | 1 | Barcelona 2 | 80 | M | Barcelona | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
161 | 1 | Barcelona 2 | 81 | F | Barcelona | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
162 | 1 | Brownsville 2 | 81 | M | Brownsville | Barcelona | 1 | 248 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
163 | 1 | Brownsville 2 | 82 | F | Brownsville | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
164 | 1 | Brownsville 2 | 82 | M | Brownsville | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
165 | 1 | Dahomey 2 | 83 | F | Dahomey | Brownsville | 1 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
166 | 1 | Brownsville 2 | 83 | M | Brownsville | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
167 | 1 | Israel 2 | 84 | F | Israel | Brownsville | 1 | 248 | NA | 33 | 46 | 79 | NA | NA | NA |
168 | 1 | Brownsville 2 | 84 | M | Brownsville | Israel | 1 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
169 | 1 | Sweden 2 | 85 | F | Sweden | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
170 | 1 | Brownsville 2 | 85 | M | Brownsville | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
171 | 1 | Barcelona 2 | 86 | F | Barcelona | Dahomey | 1 | 248 | NA | 28 | 35 | 63 | NA | NA | NA |
172 | 1 | Dahomey 2 | 86 | M | Dahomey | Barcelona | 1 | 248 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
173 | 1 | Brownsville 2 | 87 | F | Brownsville | Dahomey | 1 | NA | NA | 18 | 19 | 37 | NA | NA | NA |
174 | 1 | Dahomey 2 | 87 | M | Dahomey | Brownsville | 1 | NA | NA | NA | NA | NA | 0 | 43 | 0.0000000 |
175 | 1 | Dahomey 2 | 88 | F | Dahomey | Dahomey | 1 | NA | NA | 21 | 21 | 42 | NA | NA | NA |
176 | 1 | Dahomey 2 | 88 | M | Dahomey | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
177 | 1 | Israel 2 | 89 | F | Israel | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
178 | 1 | Dahomey 2 | 89 | M | Dahomey | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
179 | 1 | Sweden 2 | 90 | F | Sweden | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
180 | 1 | Dahomey 2 | 90 | M | Dahomey | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
181 | 1 | Barcelona 2 | 91 | F | Barcelona | Israel | 1 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
182 | 1 | Israel 2 | 91 | M | Israel | Barcelona | 1 | NA | NA | NA | NA | NA | 0 | 28 | 0.0000000 |
183 | 1 | Brownsville 2 | 92 | F | Brownsville | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
184 | 1 | Israel 2 | 92 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
185 | 1 | Dahomey 2 | 93 | F | Dahomey | Israel | 1 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
186 | 1 | Israel 2 | 93 | M | Israel | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
187 | 1 | Israel 2 | 94 | F | Israel | Israel | 1 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
188 | 1 | Israel 2 | 94 | M | Israel | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
189 | 1 | Sweden 2 | 95 | F | Sweden | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
190 | 1 | Israel 2 | 95 | M | Israel | Sweden | 1 | 250 | NA | NA | NA | NA | 64 | 0 | 1.0000000 |
191 | 1 | Barcelona 2 | 96 | F | Barcelona | Sweden | 1 | 250 | NA | 25 | 30 | 55 | NA | NA | NA |
192 | 1 | Sweden 2 | 96 | M | Sweden | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
193 | 1 | Brownsville 2 | 97 | F | Brownsville | Sweden | 1 | NA | NA | 30 | 33 | 63 | NA | NA | NA |
194 | 1 | Sweden 2 | 97 | M | Sweden | Brownsville | 1 | NA | NA | NA | NA | NA | 97 | 2 | 0.9797980 |
195 | 1 | Dahomey 2 | 98 | F | Dahomey | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
196 | 1 | Sweden 2 | 98 | M | Sweden | Dahomey | 1 | NA | NA | NA | NA | NA | 116 | 2 | 0.9830508 |
197 | 1 | Israel 2 | 99 | F | Israel | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
198 | 1 | Sweden 2 | 99 | M | Sweden | Israel | 1 | 269 | NA | NA | NA | NA | 79 | 17 | 0.8229167 |
199 | 1 | Sweden 2 | 100 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
200 | 1 | Sweden 2 | 100 | M | Sweden | Sweden | 1 | 248 | NA | NA | NA | NA | 96 | 0 | 1.0000000 |
201 | 1 | Barcelona 2 | 101 | F | Barcelona | Barcelona | 1 | NA | NA | NA | NA | NA | NA | NA | NA |
202 | 1 | Barcelona 2 | 101 | M | Barcelona | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
203 | 1 | Brownsville 2 | 102 | F | Brownsville | Barcelona | 1 | 243 | NA | 15 | 18 | 33 | NA | NA | NA |
204 | 1 | Barcelona 2 | 102 | M | Barcelona | Brownsville | 1 | NA | NA | NA | NA | NA | 19 | 51 | 0.2714286 |
205 | 1 | Dahomey 2 | 103 | F | Dahomey | Barcelona | 1 | 269 | NA | 4 | 6 | 10 | NA | NA | NA |
206 | 1 | Barcelona 2 | 103 | M | Barcelona | Dahomey | 1 | NA | NA | NA | NA | NA | 57 | 8 | 0.8769231 |
207 | 1 | Israel 2 | 104 | F | Israel | Barcelona | 1 | 269 | NA | 0 | 0 | 0 | NA | NA | NA |
208 | 1 | Barcelona 2 | 104 | M | Barcelona | Israel | 1 | NA | NA | NA | NA | NA | 0 | 101 | 0.0000000 |
209 | 1 | Sweden 2 | 105 | F | Sweden | Barcelona | 1 | NA | NA | NA | NA | NA | NA | NA | NA |
210 | 1 | Barcelona 2 | 105 | M | Barcelona | Sweden | 1 | NA | NA | NA | NA | NA | 79 | 0 | 1.0000000 |
213 | 1 | Brownsville 2 | 107 | F | Brownsville | Brownsville | 1 | NA | NA | 17 | 22 | 39 | NA | NA | NA |
214 | 1 | Brownsville 2 | 107 | M | Brownsville | Brownsville | 1 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
215 | 1 | Dahomey 2 | 108 | F | Dahomey | Brownsville | 1 | NA | NA | 28 | 37 | 65 | NA | NA | NA |
216 | 1 | Brownsville 2 | 108 | M | Brownsville | Dahomey | 1 | NA | NA | NA | NA | NA | 0 | 34 | 0.0000000 |
217 | 1 | Israel 2 | 109 | F | Israel | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
218 | 1 | Brownsville 2 | 109 | M | Brownsville | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
219 | 1 | Sweden 2 | 110 | F | Sweden | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
220 | 1 | Brownsville 2 | 110 | M | Brownsville | Sweden | 1 | 274 | NA | NA | NA | NA | 0 | 20 | 0.0000000 |
221 | 1 | Barcelona 2 | 111 | F | Barcelona | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
222 | 1 | Dahomey 2 | 111 | M | Dahomey | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
223 | 1 | Brownsville 2 | 112 | F | Brownsville | Dahomey | 1 | 267 | NA | 0 | 0 | 0 | NA | NA | NA |
224 | 1 | Dahomey 2 | 112 | M | Dahomey | Brownsville | 1 | 267 | NA | NA | NA | NA | 66 | 0 | 1.0000000 |
227 | 1 | Israel 2 | 114 | F | Israel | Dahomey | 1 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
228 | 1 | Dahomey 2 | 114 | M | Dahomey | Israel | 1 | NA | NA | NA | NA | NA | 0 | 8 | 0.0000000 |
229 | 1 | Sweden 2 | 115 | F | Sweden | Dahomey | 1 | 267 | NA | 0 | 0 | 0 | NA | NA | NA |
230 | 1 | Dahomey 2 | 115 | M | Dahomey | Sweden | 1 | 269 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
231 | 1 | Barcelona 2 | 116 | F | Barcelona | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
232 | 1 | Israel 2 | 116 | M | Israel | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
233 | 1 | Brownsville 2 | 117 | F | Brownsville | Israel | 1 | 248 | NA | 0 | 0 | 0 | NA | NA | NA |
234 | 1 | Israel 2 | 117 | M | Israel | Brownsville | 1 | 267 | NA | NA | NA | NA | 47 | 0 | 1.0000000 |
235 | 1 | Dahomey 2 | 118 | F | Dahomey | Israel | 1 | 270 | NA | 30 | 31 | 61 | NA | NA | NA |
236 | 1 | Israel 2 | 118 | M | Israel | Dahomey | 1 | 274 | NA | NA | NA | NA | 11 | 0 | 1.0000000 |
237 | 1 | Israel 2 | 119 | F | Israel | Israel | 1 | 248 | NA | 23 | 47 | 70 | NA | NA | NA |
238 | 1 | Israel 2 | 119 | M | Israel | Israel | 1 | 248 | NA | NA | NA | NA | 19 | 0 | 1.0000000 |
239 | 1 | Sweden 2 | 120 | F | Sweden | Israel | 1 | 248 | NA | 37 | 46 | 83 | NA | NA | NA |
240 | 1 | Israel 2 | 120 | M | Israel | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
241 | 1 | Barcelona 2 | 121 | F | Barcelona | Sweden | 1 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
242 | 1 | Sweden 2 | 121 | M | Sweden | Barcelona | 1 | 269 | NA | NA | NA | NA | 21 | 19 | 0.5250000 |
243 | 1 | Brownsville 2 | 122 | F | Brownsville | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
244 | 1 | Sweden 2 | 122 | M | Sweden | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
247 | 1 | Israel 2 | 124 | F | Israel | Sweden | 1 | 250 | NA | 26 | 17 | 43 | NA | NA | NA |
248 | 1 | Sweden 2 | 124 | M | Sweden | Israel | 1 | 267 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
249 | 1 | Sweden 2 | 125 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
250 | 1 | Sweden 2 | 125 | M | Sweden | Sweden | 1 | NA | NA | NA | NA | NA | 0 | 1 | 0.0000000 |
251 | 1 | Barcelona 2 | 126 | F | Barcelona | Barcelona | 1 | 274 | NA | 16 | 20 | 36 | NA | NA | NA |
252 | 1 | Barcelona 2 | 126 | M | Barcelona | Barcelona | 1 | 288 | NA | NA | NA | NA | 0 | 74 | 0.0000000 |
253 | 1 | Brownsville 2 | 127 | F | Brownsville | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
254 | 1 | Barcelona 2 | 127 | M | Barcelona | Brownsville | 1 | 269 | NA | NA | NA | NA | 29 | 0 | 1.0000000 |
255 | 1 | Dahomey 2 | 128 | F | Dahomey | Barcelona | 1 | 247 | NA | 40 | 43 | 83 | NA | NA | NA |
256 | 1 | Barcelona 2 | 128 | M | Barcelona | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
257 | 1 | Israel 2 | 129 | F | Israel | Barcelona | 1 | NA | NA | 35 | 33 | 68 | NA | NA | NA |
258 | 1 | Barcelona 2 | 129 | M | Barcelona | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
259 | 1 | Sweden 2 | 130 | F | Sweden | Barcelona | 1 | NA | NA | 50 | 27 | 77 | NA | NA | NA |
260 | 1 | Barcelona 2 | 130 | M | Barcelona | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
261 | 1 | Barcelona 2 | 131 | F | Barcelona | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
262 | 1 | Brownsville 2 | 131 | M | Brownsville | Barcelona | 1 | 267 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
263 | 1 | Brownsville 2 | 132 | F | Brownsville | Brownsville | 1 | NA | NA | 38 | 46 | 84 | NA | NA | NA |
264 | 1 | Brownsville 2 | 132 | M | Brownsville | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
265 | 1 | Dahomey 2 | 133 | F | Dahomey | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
266 | 1 | Brownsville 2 | 133 | M | Brownsville | Dahomey | 1 | 269 | NA | NA | NA | NA | NA | NA | NA |
267 | 1 | Israel 2 | 134 | F | Israel | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
268 | 1 | Brownsville 2 | 134 | M | Brownsville | Israel | 1 | NA | NA | NA | NA | NA | 0 | 33 | 0.0000000 |
269 | 1 | Sweden 2 | 135 | F | Sweden | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
270 | 1 | Brownsville 2 | 135 | M | Brownsville | Sweden | 1 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
271 | 1 | Barcelona 2 | 136 | F | Barcelona | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
272 | 1 | Dahomey 2 | 136 | M | Dahomey | Barcelona | 1 | 267 | NA | NA | NA | NA | 89 | 0 | 1.0000000 |
273 | 1 | Brownsville 2 | 137 | F | Brownsville | Dahomey | 1 | 243 | NA | NA | NA | NA | NA | NA | NA |
274 | 1 | Dahomey 2 | 137 | M | Dahomey | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
275 | 1 | Dahomey 2 | 138 | F | Dahomey | Dahomey | 1 | NA | NA | 14 | 13 | 27 | NA | NA | NA |
276 | 1 | Dahomey 2 | 138 | M | Dahomey | Dahomey | 1 | 270 | NA | NA | NA | NA | 124 | 0 | 1.0000000 |
277 | 1 | Israel 2 | 139 | F | Israel | Dahomey | 1 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
278 | 1 | Dahomey 2 | 139 | M | Dahomey | Israel | 1 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
281 | 1 | Barcelona 2 | 141 | F | Barcelona | Israel | 1 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
282 | 1 | Israel 2 | 141 | M | Israel | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
283 | 1 | Brownsville 2 | 142 | F | Brownsville | Israel | 1 | 250 | NA | 0 | 0 | 0 | NA | NA | NA |
284 | 1 | Israel 2 | 142 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
285 | 1 | Dahomey 2 | 143 | F | Dahomey | Israel | 1 | 293 | NA | 0 | 0 | 0 | NA | NA | NA |
286 | 1 | Israel 2 | 143 | M | Israel | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
287 | 1 | Israel 2 | 144 | F | Israel | Israel | 1 | 250 | NA | 0 | 0 | 0 | NA | NA | NA |
288 | 1 | Israel 2 | 144 | M | Israel | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
291 | 1 | Barcelona 2 | 146 | F | Barcelona | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
292 | 1 | Sweden 2 | 146 | M | Sweden | Barcelona | 1 | 269 | NA | NA | NA | NA | 18 | 0 | 1.0000000 |
293 | 1 | Brownsville 2 | 147 | F | Brownsville | Sweden | 1 | 267 | NA | 24 | 23 | 47 | NA | NA | NA |
294 | 1 | Sweden 2 | 147 | M | Sweden | Brownsville | 1 | NA | NA | NA | NA | NA | 64 | 9 | 0.8767123 |
295 | 1 | Dahomey 2 | 148 | F | Dahomey | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
296 | 1 | Sweden 2 | 148 | M | Sweden | Dahomey | 1 | 267 | NA | NA | NA | NA | 69 | 11 | 0.8625000 |
297 | 1 | Israel 2 | 149 | F | Israel | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
298 | 1 | Sweden 2 | 149 | M | Sweden | Israel | 1 | NA | NA | NA | NA | NA | 0 | 45 | 0.0000000 |
299 | 1 | Sweden 2 | 150 | F | Sweden | Sweden | 1 | NA | NA | NA | NA | NA | NA | NA | NA |
300 | 1 | Sweden 2 | 150 | M | Sweden | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
301 | 2 | Barcelona 1 | 151 | F | Barcelona | Barcelona | 1 | 287 | NA | 0 | 0 | 0 | NA | NA | NA |
302 | 2 | Barcelona 1 | 151 | M | Barcelona | Barcelona | 1 | 289 | NA | NA | NA | NA | 110 | 7 | 0.9401709 |
303 | 2 | Brownsville 1 | 152 | F | Brownsville | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
304 | 2 | Barcelona 1 | 152 | M | Barcelona | Brownsville | 1 | 294 | NA | NA | NA | NA | 94 | 0 | 1.0000000 |
305 | 2 | Dahomey 1 | 153 | F | Dahomey | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
306 | 2 | Barcelona 1 | 153 | M | Barcelona | Dahomey | 1 | 287 | NA | NA | NA | NA | 14 | 0 | 1.0000000 |
307 | 2 | Israel 1 | 154 | F | Israel | Barcelona | 1 | 272 | NA | NA | NA | NA | NA | NA | NA |
308 | 2 | Barcelona 1 | 154 | M | Barcelona | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
309 | 2 | Sweden 1 | 155 | F | Sweden | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
310 | 2 | Barcelona 1 | 155 | M | Barcelona | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
311 | 2 | Barcelona 1 | 156 | F | Barcelona | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
312 | 2 | Brownsville 1 | 156 | M | Brownsville | Barcelona | 1 | 290 | NA | NA | NA | NA | 0 | 88 | 0.0000000 |
313 | 2 | Brownsville 1 | 157 | F | Brownsville | Brownsville | 1 | 269 | NA | 36 | 37 | 73 | NA | NA | NA |
314 | 2 | Brownsville 1 | 157 | M | Brownsville | Brownsville | 1 | 268 | NA | NA | NA | NA | 0 | 21 | 0.0000000 |
315 | 2 | Dahomey 1 | 158 | F | Dahomey | Brownsville | 1 | 288 | NA | 19 | 32 | 51 | NA | NA | NA |
316 | 2 | Brownsville 1 | 158 | M | Brownsville | Dahomey | 1 | NA | NA | NA | NA | NA | 0 | 88 | 0.0000000 |
317 | 2 | Israel 1 | 159 | F | Israel | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
318 | 2 | Brownsville 1 | 159 | M | Brownsville | Israel | 1 | 286 | NA | NA | NA | NA | 18 | 75 | 0.1935484 |
319 | 2 | Sweden 1 | 160 | F | Sweden | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
320 | 2 | Brownsville 1 | 160 | M | Brownsville | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
321 | 2 | Barcelona 1 | 161 | F | Barcelona | Dahomey | 1 | 296 | NA | 0 | 0 | 0 | NA | NA | NA |
322 | 2 | Dahomey 1 | 161 | M | Dahomey | Barcelona | 1 | NA | NA | NA | NA | NA | 0 | 72 | 0.0000000 |
323 | 2 | Brownsville 1 | 162 | F | Brownsville | Dahomey | 1 | 298 | NA | 19 | 16 | 35 | NA | NA | NA |
324 | 2 | Dahomey 1 | 162 | M | Dahomey | Brownsville | 1 | 295 | NA | NA | NA | NA | 46 | 23 | 0.6666667 |
325 | 2 | Dahomey 1 | 163 | F | Dahomey | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
326 | 2 | Dahomey 1 | 163 | M | Dahomey | Dahomey | 1 | 286 | NA | NA | NA | NA | 0 | 26 | 0.0000000 |
327 | 2 | Israel 1 | 164 | F | Israel | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
328 | 2 | Dahomey 1 | 164 | M | Dahomey | Israel | 1 | 266 | NA | NA | NA | NA | 0 | 29 | 0.0000000 |
329 | 2 | Sweden 1 | 165 | F | Sweden | Dahomey | 1 | 269 | NA | 39 | 24 | 63 | NA | NA | NA |
330 | 2 | Dahomey 1 | 165 | M | Dahomey | Sweden | 1 | 275 | NA | NA | NA | NA | 33 | 16 | 0.6734694 |
331 | 2 | Barcelona 1 | 166 | F | Barcelona | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
332 | 2 | Israel 1 | 166 | M | Israel | Barcelona | 1 | 267 | NA | NA | NA | NA | 0 | 6 | 0.0000000 |
333 | 2 | Brownsville 1 | 167 | F | Brownsville | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
334 | 2 | Israel 1 | 167 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
335 | 2 | Dahomey 1 | 168 | F | Dahomey | Israel | 1 | 287 | NA | 39 | 28 | 67 | NA | NA | NA |
336 | 2 | Israel 1 | 168 | M | Israel | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
337 | 2 | Israel 1 | 169 | F | Israel | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
338 | 2 | Israel 1 | 169 | M | Israel | Israel | 1 | 275 | NA | NA | NA | NA | 34 | 10 | 0.7727273 |
339 | 2 | Sweden 1 | 170 | F | Sweden | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
340 | 2 | Israel 1 | 170 | M | Israel | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
341 | 2 | Barcelona 1 | 171 | F | Barcelona | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
342 | 2 | Sweden 1 | 171 | M | Sweden | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
343 | 2 | Brownsville 1 | 172 | F | Brownsville | Sweden | 1 | 264 | NA | 26 | 32 | 58 | NA | NA | NA |
344 | 2 | Sweden 1 | 172 | M | Sweden | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
345 | 2 | Dahomey 1 | 173 | F | Dahomey | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
346 | 2 | Sweden 1 | 173 | M | Sweden | Dahomey | 1 | NA | NA | NA | NA | NA | 45 | 1 | 0.9782609 |
347 | 2 | Israel 1 | 174 | F | Israel | Sweden | 1 | 289 | NA | 47 | 41 | 88 | NA | NA | NA |
348 | 2 | Sweden 1 | 174 | M | Sweden | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
349 | 2 | Sweden 1 | 175 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
350 | 2 | Sweden 1 | 175 | M | Sweden | Sweden | 1 | 269 | NA | NA | NA | NA | 12 | 0 | 1.0000000 |
351 | 2 | Barcelona 1 | 176 | F | Barcelona | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
352 | 2 | Barcelona 1 | 176 | M | Barcelona | Barcelona | 1 | 286 | NA | NA | NA | NA | 23 | 37 | 0.3833333 |
353 | 2 | Brownsville 1 | 177 | F | Brownsville | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
354 | 2 | Barcelona 1 | 177 | M | Barcelona | Brownsville | 1 | 268 | NA | NA | NA | NA | 107 | 13 | 0.8916667 |
355 | 2 | Dahomey 1 | 178 | F | Dahomey | Barcelona | 1 | 264 | NA | 28 | 20 | 48 | NA | NA | NA |
356 | 2 | Barcelona 1 | 178 | M | Barcelona | Dahomey | 1 | 271 | NA | NA | NA | NA | 48 | 0 | 1.0000000 |
357 | 2 | Israel 1 | 179 | F | Israel | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
358 | 2 | Barcelona 1 | 179 | M | Barcelona | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
359 | 2 | Sweden 1 | 180 | F | Sweden | Barcelona | 1 | 248 | NA | 36 | 37 | 73 | NA | NA | NA |
360 | 2 | Barcelona 1 | 180 | M | Barcelona | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
361 | 2 | Barcelona 1 | 181 | F | Barcelona | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
362 | 2 | Brownsville 1 | 181 | M | Brownsville | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
363 | 2 | Brownsville 1 | 182 | F | Brownsville | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
364 | 2 | Brownsville 1 | 182 | M | Brownsville | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
365 | 2 | Dahomey 1 | 183 | F | Dahomey | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
366 | 2 | Brownsville 1 | 183 | M | Brownsville | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
367 | 2 | Israel 1 | 184 | F | Israel | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
368 | 2 | Brownsville 1 | 184 | M | Brownsville | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
369 | 2 | Sweden 1 | 185 | F | Sweden | Brownsville | 1 | 268 | NA | 2 | 6 | 8 | NA | NA | NA |
370 | 2 | Brownsville 1 | 185 | M | Brownsville | Sweden | 1 | 250 | NA | NA | NA | NA | 0 | 69 | 0.0000000 |
371 | 2 | Barcelona 1 | 186 | F | Barcelona | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
372 | 2 | Dahomey 1 | 186 | M | Dahomey | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
373 | 2 | Brownsville 1 | 187 | F | Brownsville | Dahomey | 1 | 271 | NA | 26 | 37 | 63 | NA | NA | NA |
374 | 2 | Dahomey 1 | 187 | M | Dahomey | Brownsville | 1 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
375 | 2 | Dahomey 1 | 188 | F | Dahomey | Dahomey | 1 | 245 | NA | 9 | 10 | 19 | NA | NA | NA |
376 | 2 | Dahomey 1 | 188 | M | Dahomey | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
377 | 2 | Israel 1 | 189 | F | Israel | Dahomey | 1 | NA | NA | 17 | 22 | 39 | NA | NA | NA |
378 | 2 | Dahomey 1 | 189 | M | Dahomey | Israel | 1 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
379 | 2 | Sweden 1 | 190 | F | Sweden | Dahomey | 1 | 286 | NA | 24 | 26 | 50 | NA | NA | NA |
380 | 2 | Dahomey 1 | 190 | M | Dahomey | Sweden | 1 | 270 | NA | NA | NA | NA | 64 | 28 | 0.6956522 |
381 | 2 | Barcelona 1 | 191 | F | Barcelona | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
382 | 2 | Israel 1 | 191 | M | Israel | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
383 | 2 | Brownsville 1 | 192 | F | Brownsville | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
384 | 2 | Israel 1 | 192 | M | Israel | Brownsville | 1 | 273 | NA | NA | NA | NA | 64 | 0 | 1.0000000 |
385 | 2 | Dahomey 1 | 193 | F | Dahomey | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
386 | 2 | Israel 1 | 193 | M | Israel | Dahomey | 1 | 286 | NA | NA | NA | NA | 0 | 49 | 0.0000000 |
387 | 2 | Israel 1 | 194 | F | Israel | Israel | 1 | 269 | NA | 0 | 0 | 0 | NA | NA | NA |
388 | 2 | Israel 1 | 194 | M | Israel | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
389 | 2 | Sweden 1 | 195 | F | Sweden | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
390 | 2 | Israel 1 | 195 | M | Israel | Sweden | 1 | 264 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
391 | 2 | Barcelona 1 | 196 | F | Barcelona | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
392 | 2 | Sweden 1 | 196 | M | Sweden | Barcelona | 1 | 266 | NA | NA | NA | NA | 23 | 5 | 0.8214286 |
393 | 2 | Brownsville 1 | 197 | F | Brownsville | Sweden | 1 | 271 | NA | 0 | 0 | 0 | NA | NA | NA |
394 | 2 | Sweden 1 | 197 | M | Sweden | Brownsville | 1 | 264 | NA | NA | NA | NA | 19 | 0 | 1.0000000 |
395 | 2 | Dahomey 1 | 198 | F | Dahomey | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
396 | 2 | Sweden 1 | 198 | M | Sweden | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
397 | 2 | Israel 1 | 199 | F | Israel | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
398 | 2 | Sweden 1 | 199 | M | Sweden | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
399 | 2 | Sweden 1 | 200 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
400 | 2 | Sweden 1 | 200 | M | Sweden | Sweden | 1 | 266 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
401 | 2 | Barcelona 1 | 201 | F | Barcelona | Barcelona | 1 | 268 | NA | 0 | 0 | 0 | NA | NA | NA |
402 | 2 | Barcelona 1 | 201 | M | Barcelona | Barcelona | 1 | 266 | NA | NA | NA | NA | 59 | 66 | 0.4720000 |
403 | 2 | Brownsville 1 | 202 | F | Brownsville | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
404 | 2 | Barcelona 1 | 202 | M | Barcelona | Brownsville | 1 | 272 | NA | NA | NA | NA | 17 | 0 | 1.0000000 |
405 | 2 | Dahomey 1 | 203 | F | Dahomey | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
406 | 2 | Barcelona 1 | 203 | M | Barcelona | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
407 | 2 | Israel 1 | 204 | F | Israel | Barcelona | 1 | NA | NA | 29 | 17 | 46 | NA | NA | NA |
408 | 2 | Barcelona 1 | 204 | M | Barcelona | Israel | 1 | NA | NA | NA | NA | NA | 96 | 0 | 1.0000000 |
409 | 2 | Sweden 1 | 205 | F | Sweden | Barcelona | 1 | 287 | NA | 18 | 25 | 43 | NA | NA | NA |
410 | 2 | Barcelona 1 | 205 | M | Barcelona | Sweden | 1 | 275 | NA | NA | NA | NA | 0 | 50 | 0.0000000 |
411 | 2 | Barcelona 1 | 206 | F | Barcelona | Brownsville | 1 | 269 | NA | 26 | 26 | 52 | NA | NA | NA |
412 | 2 | Brownsville 1 | 206 | M | Brownsville | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
413 | 2 | Brownsville 1 | 207 | F | Brownsville | Brownsville | 1 | NA | NA | 26 | 38 | 64 | NA | NA | NA |
414 | 2 | Brownsville 1 | 207 | M | Brownsville | Brownsville | 1 | NA | NA | NA | NA | NA | 0 | 100 | 0.0000000 |
415 | 2 | Dahomey 1 | 208 | F | Dahomey | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
416 | 2 | Brownsville 1 | 208 | M | Brownsville | Dahomey | 1 | 270 | NA | NA | NA | NA | 0 | 49 | 0.0000000 |
417 | 2 | Israel 1 | 209 | F | Israel | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
418 | 2 | Brownsville 1 | 209 | M | Brownsville | Israel | 1 | 263 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
419 | 2 | Sweden 1 | 210 | F | Sweden | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
420 | 2 | Brownsville 1 | 210 | M | Brownsville | Sweden | 1 | 264 | NA | NA | NA | NA | 0 | 90 | 0.0000000 |
421 | 2 | Barcelona 1 | 211 | F | Barcelona | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
422 | 2 | Dahomey 1 | 211 | M | Dahomey | Barcelona | 1 | 283 | NA | NA | NA | NA | 57 | 7 | 0.8906250 |
423 | 2 | Brownsville 1 | 212 | F | Brownsville | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
424 | 2 | Dahomey 1 | 212 | M | Dahomey | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
425 | 2 | Dahomey 1 | 213 | F | Dahomey | Dahomey | 1 | 266 | NA | 26 | 30 | 56 | NA | NA | NA |
426 | 2 | Dahomey 1 | 213 | M | Dahomey | Dahomey | 1 | 266 | NA | NA | NA | NA | 23 | 2 | 0.9200000 |
427 | 2 | Israel 1 | 214 | F | Israel | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
428 | 2 | Dahomey 1 | 214 | M | Dahomey | Israel | 1 | 249 | NA | NA | NA | NA | 13 | 68 | 0.1604938 |
429 | 2 | Sweden 1 | 215 | F | Sweden | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
430 | 2 | Dahomey 1 | 215 | M | Dahomey | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
431 | 2 | Barcelona 1 | 216 | F | Barcelona | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
432 | 2 | Israel 1 | 216 | M | Israel | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
433 | 2 | Brownsville 1 | 217 | F | Brownsville | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
434 | 2 | Israel 1 | 217 | M | Israel | Brownsville | 1 | 291 | NA | NA | NA | NA | 0 | 55 | 0.0000000 |
435 | 2 | Dahomey 1 | 218 | F | Dahomey | Israel | 1 | NA | NA | 26 | 13 | 39 | NA | NA | NA |
436 | 2 | Israel 1 | 218 | M | Israel | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
439 | 2 | Sweden 1 | 220 | F | Sweden | Israel | 1 | 297 | NA | 17 | 22 | 39 | NA | NA | NA |
440 | 2 | Israel 1 | 220 | M | Israel | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
441 | 2 | Barcelona 1 | 221 | F | Barcelona | Sweden | 1 | 269 | NA | 31 | 19 | 50 | NA | NA | NA |
442 | 2 | Sweden 1 | 221 | M | Sweden | Barcelona | 1 | 294 | NA | NA | NA | NA | 0 | 27 | 0.0000000 |
443 | 2 | Brownsville 1 | 222 | F | Brownsville | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
444 | 2 | Sweden 1 | 222 | M | Sweden | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
445 | 2 | Dahomey 1 | 223 | F | Dahomey | Sweden | 1 | 262 | NA | 35 | 30 | 65 | NA | NA | NA |
446 | 2 | Sweden 1 | 223 | M | Sweden | Dahomey | 1 | 266 | NA | NA | NA | NA | 0 | 34 | 0.0000000 |
447 | 2 | Israel 1 | 224 | F | Israel | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
448 | 2 | Sweden 1 | 224 | M | Sweden | Israel | 1 | 265 | NA | NA | NA | NA | 79 | 7 | 0.9186047 |
449 | 2 | Sweden 1 | 225 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
450 | 2 | Sweden 1 | 225 | M | Sweden | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
451 | 2 | Barcelona 1 | 226 | F | Barcelona | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
452 | 2 | Barcelona 1 | 226 | M | Barcelona | Barcelona | 1 | 270 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
453 | 2 | Brownsville 1 | 227 | F | Brownsville | Barcelona | 1 | 266 | NA | 45 | 56 | 101 | NA | NA | NA |
454 | 2 | Barcelona 1 | 227 | M | Barcelona | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
455 | 2 | Dahomey 1 | 228 | F | Dahomey | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
456 | 2 | Barcelona 1 | 228 | M | Barcelona | Dahomey | 1 | 277 | NA | NA | NA | NA | 59 | 0 | 1.0000000 |
457 | 2 | Israel 1 | 229 | F | Israel | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
458 | 2 | Barcelona 1 | 229 | M | Barcelona | Israel | 1 | 271 | NA | NA | NA | NA | 74 | 0 | 1.0000000 |
461 | 2 | Barcelona 1 | 231 | F | Barcelona | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
462 | 2 | Brownsville 1 | 231 | M | Brownsville | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
463 | 2 | Brownsville 1 | 232 | F | Brownsville | Brownsville | 1 | 265 | NA | 0 | 0 | 0 | NA | NA | NA |
464 | 2 | Brownsville 1 | 232 | M | Brownsville | Brownsville | 1 | 265 | NA | NA | NA | NA | 0 | 37 | 0.0000000 |
465 | 2 | Dahomey 1 | 233 | F | Dahomey | Brownsville | 1 | 286 | NA | 17 | 31 | 48 | NA | NA | NA |
466 | 2 | Brownsville 1 | 233 | M | Brownsville | Dahomey | 1 | 264 | NA | NA | NA | NA | 0 | 66 | 0.0000000 |
467 | 2 | Israel 1 | 234 | F | Israel | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
468 | 2 | Brownsville 1 | 234 | M | Brownsville | Israel | 1 | 276 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
469 | 2 | Sweden 1 | 235 | F | Sweden | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
470 | 2 | Brownsville 1 | 235 | M | Brownsville | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
471 | 2 | Barcelona 1 | 236 | F | Barcelona | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
472 | 2 | Dahomey 1 | 236 | M | Dahomey | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
473 | 2 | Brownsville 1 | 237 | F | Brownsville | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
474 | 2 | Dahomey 1 | 237 | M | Dahomey | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
475 | 2 | Dahomey 1 | 238 | F | Dahomey | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
476 | 2 | Dahomey 1 | 238 | M | Dahomey | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
479 | 2 | Sweden 1 | 240 | F | Sweden | Dahomey | 1 | 272 | NA | 34 | 40 | 74 | NA | NA | NA |
480 | 2 | Dahomey 1 | 240 | M | Dahomey | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
481 | 2 | Barcelona 1 | 241 | F | Barcelona | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
482 | 2 | Israel 1 | 241 | M | Israel | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
483 | 2 | Brownsville 1 | 242 | F | Brownsville | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
484 | 2 | Israel 1 | 242 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
491 | 2 | Barcelona 1 | 246 | F | Barcelona | Sweden | 1 | 287 | NA | 22 | 25 | 47 | NA | NA | NA |
492 | 2 | Sweden 1 | 246 | M | Sweden | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
493 | 2 | Brownsville 1 | 247 | F | Brownsville | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
494 | 2 | Sweden 1 | 247 | M | Sweden | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
495 | 2 | Dahomey 1 | 248 | F | Dahomey | Sweden | 1 | 270 | NA | 38 | 33 | 71 | NA | NA | NA |
496 | 2 | Sweden 1 | 248 | M | Sweden | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
497 | 2 | Israel 1 | 249 | F | Israel | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
498 | 2 | Sweden 1 | 249 | M | Sweden | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
499 | 2 | Sweden 1 | 250 | F | Sweden | Sweden | 1 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
500 | 2 | Sweden 1 | 250 | M | Sweden | Sweden | 1 | 294 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
501 | 2 | Barcelona 2 | 251 | F | Barcelona | Barcelona | 1 | 246 | NA | 25 | 20 | 45 | NA | NA | NA |
502 | 2 | Barcelona 2 | 251 | M | Barcelona | Barcelona | 1 | 271 | NA | NA | NA | NA | 0 | 64 | 0.0000000 |
503 | 2 | Brownsville 2 | 252 | F | Brownsville | Barcelona | 1 | 271 | NA | 0 | 0 | 0 | NA | NA | NA |
504 | 2 | Barcelona 2 | 252 | M | Barcelona | Brownsville | 1 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
507 | 2 | Israel 2 | 254 | F | Israel | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
508 | 2 | Barcelona 2 | 254 | M | Barcelona | Israel | 1 | 262 | NA | NA | NA | NA | 0 | 80 | 0.0000000 |
511 | 2 | Barcelona 2 | 256 | F | Barcelona | Brownsville | 1 | NA | NA | 32 | 25 | 57 | NA | NA | NA |
512 | 2 | Brownsville 2 | 256 | M | Brownsville | Barcelona | 1 | 270 | NA | NA | NA | NA | 0 | 62 | 0.0000000 |
513 | 2 | Brownsville 2 | 257 | F | Brownsville | Brownsville | 1 | 261 | NA | 31 | 33 | 64 | NA | NA | NA |
514 | 2 | Brownsville 2 | 257 | M | Brownsville | Brownsville | 1 | 294 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
515 | 2 | Dahomey 2 | 258 | F | Dahomey | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
516 | 2 | Brownsville 2 | 258 | M | Brownsville | Dahomey | 1 | 264 | NA | NA | NA | NA | 0 | 18 | 0.0000000 |
517 | 2 | Israel 2 | 259 | F | Israel | Brownsville | 1 | 249 | NA | 0 | 0 | 0 | NA | NA | NA |
518 | 2 | Brownsville 2 | 259 | M | Brownsville | Israel | 1 | 271 | NA | NA | NA | NA | 67 | 16 | 0.8072289 |
519 | 2 | Sweden 2 | 260 | F | Sweden | Brownsville | 1 | 306 | NA | 0 | 0 | 0 | NA | NA | NA |
520 | 2 | Brownsville 2 | 260 | M | Brownsville | Sweden | 1 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
521 | 2 | Barcelona 2 | 261 | F | Barcelona | Dahomey | 1 | 246 | NA | 35 | 39 | 74 | NA | NA | NA |
522 | 2 | Dahomey 2 | 261 | M | Dahomey | Barcelona | 1 | 268 | NA | NA | NA | NA | 32 | 0 | 1.0000000 |
523 | 2 | Brownsville 2 | 262 | F | Brownsville | Dahomey | 1 | 268 | NA | 27 | 31 | 58 | NA | NA | NA |
524 | 2 | Dahomey 2 | 262 | M | Dahomey | Brownsville | 1 | 263 | NA | NA | NA | NA | 58 | 29 | 0.6666667 |
525 | 2 | Dahomey 2 | 263 | F | Dahomey | Dahomey | 1 | 246 | NA | 0 | 0 | 0 | NA | NA | NA |
526 | 2 | Dahomey 2 | 263 | M | Dahomey | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
527 | 2 | Israel 2 | 264 | F | Israel | Dahomey | 1 | 294 | NA | 0 | 0 | 0 | NA | NA | NA |
528 | 2 | Dahomey 2 | 264 | M | Dahomey | Israel | 1 | 302 | NA | NA | NA | NA | 12 | 82 | 0.1276596 |
529 | 2 | Sweden 2 | 265 | F | Sweden | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
530 | 2 | Dahomey 2 | 265 | M | Dahomey | Sweden | 1 | 249 | NA | NA | NA | NA | 81 | 0 | 1.0000000 |
531 | 2 | Barcelona 2 | 266 | F | Barcelona | Israel | 1 | 249 | NA | 57 | 72 | 129 | NA | NA | NA |
532 | 2 | Israel 2 | 266 | M | Israel | Barcelona | 1 | 267 | NA | NA | NA | NA | 26 | 63 | 0.2921348 |
533 | 2 | Brownsville 2 | 267 | F | Brownsville | Israel | 1 | 298 | NA | 0 | 0 | 0 | NA | NA | NA |
534 | 2 | Israel 2 | 267 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
535 | 2 | Dahomey 2 | 268 | F | Dahomey | Israel | 1 | 250 | NA | 27 | 33 | 60 | NA | NA | NA |
536 | 2 | Israel 2 | 268 | M | Israel | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
537 | 2 | Israel 2 | 269 | F | Israel | Israel | 1 | 244 | NA | 33 | 40 | 73 | NA | NA | NA |
538 | 2 | Israel 2 | 269 | M | Israel | Israel | 1 | 312 | NA | NA | NA | NA | 57 | 34 | 0.6263736 |
539 | 2 | Sweden 2 | 270 | F | Sweden | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
540 | 2 | Israel 2 | 270 | M | Israel | Sweden | 1 | 248 | NA | NA | NA | NA | 54 | 26 | 0.6750000 |
541 | 2 | Barcelona 2 | 271 | F | Barcelona | Sweden | 1 | 267 | NA | 18 | 20 | 38 | NA | NA | NA |
542 | 2 | Sweden 2 | 271 | M | Sweden | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
543 | 2 | Brownsville 2 | 272 | F | Brownsville | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
544 | 2 | Sweden 2 | 272 | M | Sweden | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
545 | 2 | Dahomey 2 | 273 | F | Dahomey | Sweden | 1 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
546 | 2 | Sweden 2 | 273 | M | Sweden | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
547 | 2 | Israel 2 | 274 | F | Israel | Sweden | 1 | NA | NA | 30 | 24 | 54 | NA | NA | NA |
548 | 2 | Sweden 2 | 274 | M | Sweden | Israel | 1 | NA | NA | NA | NA | NA | 0 | 46 | 0.0000000 |
549 | 2 | Sweden 2 | 275 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
550 | 2 | Sweden 2 | 275 | M | Sweden | Sweden | 1 | 267 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
551 | 2 | Barcelona 2 | 276 | F | Barcelona | Barcelona | 1 | 275 | NA | 16 | 19 | 35 | NA | NA | NA |
552 | 2 | Barcelona 2 | 276 | M | Barcelona | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
553 | 2 | Brownsville 2 | 277 | F | Brownsville | Barcelona | 1 | 294 | NA | 11 | 13 | 24 | NA | NA | NA |
554 | 2 | Barcelona 2 | 277 | M | Barcelona | Brownsville | 1 | 267 | NA | NA | NA | NA | 0 | 29 | 0.0000000 |
555 | 2 | Dahomey 2 | 278 | F | Dahomey | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
556 | 2 | Barcelona 2 | 278 | M | Barcelona | Dahomey | 1 | 265 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
557 | 2 | Israel 2 | 279 | F | Israel | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
558 | 2 | Barcelona 2 | 279 | M | Barcelona | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
559 | 2 | Sweden 2 | 280 | F | Sweden | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
560 | 2 | Barcelona 2 | 280 | M | Barcelona | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
561 | 2 | Barcelona 2 | 281 | F | Barcelona | Brownsville | 1 | NA | NA | 29 | 28 | 57 | NA | NA | NA |
562 | 2 | Brownsville 2 | 281 | M | Brownsville | Barcelona | 1 | 270 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
563 | 2 | Brownsville 2 | 282 | F | Brownsville | Brownsville | 1 | 246 | NA | 0 | 0 | 0 | NA | NA | NA |
564 | 2 | Brownsville 2 | 282 | M | Brownsville | Brownsville | 1 | 266 | NA | NA | NA | NA | 0 | 53 | 0.0000000 |
567 | 2 | Israel 2 | 284 | F | Israel | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
568 | 2 | Brownsville 2 | 284 | M | Brownsville | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
569 | 2 | Sweden 2 | 285 | F | Sweden | Brownsville | 1 | 245 | NA | 0 | 0 | 0 | NA | NA | NA |
570 | 2 | Brownsville 2 | 285 | M | Brownsville | Sweden | 1 | 288 | NA | NA | NA | NA | 0 | 58 | 0.0000000 |
571 | 2 | Barcelona 2 | 286 | F | Barcelona | Dahomey | 1 | 264 | NA | 21 | 23 | 44 | NA | NA | NA |
572 | 2 | Dahomey 2 | 286 | M | Dahomey | Barcelona | 1 | 294 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
581 | 2 | Barcelona 2 | 291 | F | Barcelona | Israel | 1 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
582 | 2 | Israel 2 | 291 | M | Israel | Barcelona | 1 | NA | NA | NA | NA | NA | 51 | 41 | 0.5543478 |
583 | 2 | Brownsville 2 | 292 | F | Brownsville | Israel | 1 | NA | NA | 7 | 4 | 11 | NA | NA | NA |
584 | 2 | Israel 2 | 292 | M | Israel | Brownsville | 1 | NA | NA | NA | NA | NA | 45 | 1 | 0.9782609 |
591 | 2 | Barcelona 2 | 296 | F | Barcelona | Sweden | 1 | 244 | NA | 55 | 45 | 100 | NA | NA | NA |
592 | 2 | Sweden 2 | 296 | M | Sweden | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
601 | 3 | Barcelona 1 | 301 | F | Barcelona | Barcelona | 1 | 260 | 1.102 | 24 | 34 | 58 | NA | NA | NA |
602 | 3 | Barcelona 1 | 301 | M | Barcelona | Barcelona | 1 | 258 | 1.009 | NA | NA | NA | 50 | 0 | 1.0000000 |
603 | 3 | Brownsville 1 | 302 | F | Brownsville | Barcelona | 1 | 259 | 0.988 | 0 | 0 | 0 | NA | NA | NA |
604 | 3 | Barcelona 1 | 302 | M | Barcelona | Brownsville | 1 | 268 | NA | NA | NA | NA | 136 | 13 | 0.9127517 |
605 | 3 | Dahomey 1 | 303 | F | Dahomey | Barcelona | 1 | 268 | NA | 0 | 0 | 0 | NA | NA | NA |
606 | 3 | Barcelona 1 | 303 | M | Barcelona | Dahomey | 1 | 269 | 0.940 | NA | NA | NA | 0 | 26 | 0.0000000 |
607 | 3 | Israel 1 | 304 | F | Israel | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
608 | 3 | Barcelona 1 | 304 | M | Barcelona | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
609 | 3 | Sweden 1 | 305 | F | Sweden | Barcelona | 1 | 267 | 0.981 | 17 | 15 | 32 | NA | NA | NA |
610 | 3 | Barcelona 1 | 305 | M | Barcelona | Sweden | 1 | 260 | 0.820 | NA | NA | NA | 96 | 0 | 1.0000000 |
611 | 3 | Barcelona 1 | 306 | F | Barcelona | Brownsville | 1 | 249 | 1.202 | 40 | 41 | 81 | NA | NA | NA |
612 | 3 | Brownsville 1 | 306 | M | Brownsville | Barcelona | 1 | 250 | NA | NA | NA | NA | 0 | 71 | 0.0000000 |
615 | 3 | Dahomey 1 | 308 | F | Dahomey | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
616 | 3 | Brownsville 1 | 308 | M | Brownsville | Dahomey | 1 | 268 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
617 | 3 | Israel 1 | 309 | F | Israel | Brownsville | 1 | 283 | 0.969 | 6 | 6 | 12 | NA | NA | NA |
618 | 3 | Brownsville 1 | 309 | M | Brownsville | Israel | 1 | 252 | NA | NA | NA | NA | 0 | 25 | 0.0000000 |
619 | 3 | Sweden 1 | 310 | F | Sweden | Brownsville | 1 | 261 | NA | 0 | 0 | 0 | NA | NA | NA |
620 | 3 | Brownsville 1 | 310 | M | Brownsville | Sweden | 1 | 261 | 0.936 | NA | NA | NA | 0 | 73 | 0.0000000 |
621 | 3 | Barcelona 1 | 311 | F | Barcelona | Dahomey | 1 | 267 | 0.811 | 9 | 11 | 20 | NA | NA | NA |
622 | 3 | Dahomey 1 | 311 | M | Dahomey | Barcelona | 1 | 264 | NA | NA | NA | NA | 6 | 69 | 0.0800000 |
623 | 3 | Brownsville 1 | 312 | F | Brownsville | Dahomey | 1 | 266 | NA | 19 | 17 | 36 | NA | NA | NA |
624 | 3 | Dahomey 1 | 312 | M | Dahomey | Brownsville | 1 | 266 | 0.840 | NA | NA | NA | 45 | 1 | 0.9782609 |
625 | 3 | Dahomey 1 | 313 | F | Dahomey | Dahomey | 1 | 246 | 1.264 | 40 | 31 | 71 | NA | NA | NA |
626 | 3 | Dahomey 1 | 313 | M | Dahomey | Dahomey | 1 | 268 | 0.957 | NA | NA | NA | 0 | 120 | 0.0000000 |
627 | 3 | Israel 1 | 314 | F | Israel | Dahomey | 1 | 265 | NA | 13 | 19 | 32 | NA | NA | NA |
628 | 3 | Dahomey 1 | 314 | M | Dahomey | Israel | 1 | 273 | NA | NA | NA | NA | 42 | 21 | 0.6666667 |
629 | 3 | Sweden 1 | 315 | F | Sweden | Dahomey | 1 | 246 | 1.179 | 13 | 12 | 25 | NA | NA | NA |
630 | 3 | Dahomey 1 | 315 | M | Dahomey | Sweden | 1 | 245 | 1.102 | NA | NA | NA | 67 | 0 | 1.0000000 |
631 | 3 | Barcelona 1 | 316 | F | Barcelona | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
632 | 3 | Israel 1 | 316 | M | Israel | Barcelona | 1 | 248 | 1.179 | NA | NA | NA | 90 | 0 | 1.0000000 |
633 | 3 | Brownsville 1 | 317 | F | Brownsville | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
634 | 3 | Israel 1 | 317 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
635 | 3 | Dahomey 1 | 318 | F | Dahomey | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
636 | 3 | Israel 1 | 318 | M | Israel | Dahomey | 1 | 252 | 1.014 | NA | NA | NA | 72 | 17 | 0.8089888 |
637 | 3 | Israel 1 | 319 | F | Israel | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
638 | 3 | Israel 1 | 319 | M | Israel | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
639 | 3 | Sweden 1 | 320 | F | Sweden | Israel | 1 | NA | 1.194 | 25 | 21 | 46 | NA | NA | NA |
640 | 3 | Israel 1 | 320 | M | Israel | Sweden | 1 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
641 | 3 | Barcelona 1 | 321 | F | Barcelona | Sweden | 1 | 258 | NA | 28 | 20 | 48 | NA | NA | NA |
642 | 3 | Sweden 1 | 321 | M | Sweden | Barcelona | 1 | 260 | 1.030 | NA | NA | NA | 140 | 0 | 1.0000000 |
643 | 3 | Brownsville 1 | 322 | F | Brownsville | Sweden | 1 | 252 | 1.083 | 23 | 22 | 45 | NA | NA | NA |
644 | 3 | Sweden 1 | 322 | M | Sweden | Brownsville | 1 | 270 | 0.926 | NA | NA | NA | 0 | 103 | 0.0000000 |
645 | 3 | Dahomey 1 | 323 | F | Dahomey | Sweden | 1 | 246 | 1.287 | 0 | 0 | 0 | NA | NA | NA |
646 | 3 | Sweden 1 | 323 | M | Sweden | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
647 | 3 | Israel 1 | 324 | F | Israel | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
648 | 3 | Sweden 1 | 324 | M | Sweden | Israel | 1 | 246 | 1.139 | NA | NA | NA | 44 | 0 | 1.0000000 |
649 | 3 | Sweden 1 | 325 | F | Sweden | Sweden | 1 | 244 | 1.163 | 26 | 32 | 58 | NA | NA | NA |
650 | 3 | Sweden 1 | 325 | M | Sweden | Sweden | 1 | 287 | 0.951 | NA | NA | NA | 0 | 52 | 0.0000000 |
651 | 3 | Barcelona 1 | 326 | F | Barcelona | Barcelona | 1 | 260 | 1.020 | 35 | 19 | 54 | NA | NA | NA |
652 | 3 | Barcelona 1 | 326 | M | Barcelona | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
653 | 3 | Brownsville 1 | 327 | F | Brownsville | Barcelona | 1 | 256 | 1.142 | 29 | 29 | 58 | NA | NA | NA |
654 | 3 | Barcelona 1 | 327 | M | Barcelona | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
655 | 3 | Dahomey 1 | 328 | F | Dahomey | Barcelona | 1 | 254 | 1.176 | 13 | 34 | 47 | NA | NA | NA |
656 | 3 | Barcelona 1 | 328 | M | Barcelona | Dahomey | 1 | 264 | 0.982 | NA | NA | NA | 119 | 0 | 1.0000000 |
657 | 3 | Israel 1 | 329 | F | Israel | Barcelona | 1 | 273 | 1.108 | 0 | 0 | 0 | NA | NA | NA |
658 | 3 | Barcelona 1 | 329 | M | Barcelona | Israel | 1 | 267 | 1.033 | NA | NA | NA | 0 | 59 | 0.0000000 |
661 | 3 | Barcelona 1 | 331 | F | Barcelona | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
662 | 3 | Brownsville 1 | 331 | M | Brownsville | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
663 | 3 | Brownsville 1 | 332 | F | Brownsville | Brownsville | 1 | 265 | 1.039 | 5 | 4 | 9 | NA | NA | NA |
664 | 3 | Brownsville 1 | 332 | M | Brownsville | Brownsville | 1 | 268 | 1.012 | NA | NA | NA | 0 | 72 | 0.0000000 |
665 | 3 | Dahomey 1 | 333 | F | Dahomey | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
666 | 3 | Brownsville 1 | 333 | M | Brownsville | Dahomey | 1 | 250 | 1.050 | NA | NA | NA | 0 | 0 | 0.0000000 |
667 | 3 | Israel 1 | 334 | F | Israel | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
668 | 3 | Brownsville 1 | 334 | M | Brownsville | Israel | 1 | 243 | 1.009 | NA | NA | NA | 0 | 32 | 0.0000000 |
669 | 3 | Sweden 1 | 335 | F | Sweden | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
670 | 3 | Brownsville 1 | 335 | M | Brownsville | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
671 | 3 | Barcelona 1 | 336 | F | Barcelona | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
672 | 3 | Dahomey 1 | 336 | M | Dahomey | Barcelona | 1 | 273 | NA | NA | NA | NA | 0 | 57 | 0.0000000 |
673 | 3 | Brownsville 1 | 337 | F | Brownsville | Dahomey | 1 | 248 | NA | 27 | 24 | 51 | NA | NA | NA |
674 | 3 | Dahomey 1 | 337 | M | Dahomey | Brownsville | 1 | 253 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
675 | 3 | Dahomey 1 | 338 | F | Dahomey | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
676 | 3 | Dahomey 1 | 338 | M | Dahomey | Dahomey | 1 | 273 | 0.964 | NA | NA | NA | 0 | 76 | 0.0000000 |
677 | 3 | Israel 1 | 339 | F | Israel | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
678 | 3 | Dahomey 1 | 339 | M | Dahomey | Israel | 1 | 266 | 1.030 | NA | NA | NA | 86 | 4 | 0.9555556 |
679 | 3 | Sweden 1 | 340 | F | Sweden | Dahomey | 1 | 248 | NA | 0 | 0 | 0 | NA | NA | NA |
680 | 3 | Dahomey 1 | 340 | M | Dahomey | Sweden | 1 | 258 | NA | NA | NA | NA | 0 | 48 | 0.0000000 |
681 | 3 | Barcelona 1 | 341 | F | Barcelona | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
682 | 3 | Israel 1 | 341 | M | Israel | Barcelona | 1 | 262 | 1.050 | NA | NA | NA | 83 | 5 | 0.9431818 |
683 | 3 | Brownsville 1 | 342 | F | Brownsville | Israel | 1 | 261 | 1.084 | 22 | 23 | 45 | NA | NA | NA |
684 | 3 | Israel 1 | 342 | M | Israel | Brownsville | 1 | 261 | 0.975 | NA | NA | NA | 69 | 0 | 1.0000000 |
685 | 3 | Dahomey 1 | 343 | F | Dahomey | Israel | 1 | 259 | 1.155 | 0 | 0 | 0 | NA | NA | NA |
686 | 3 | Israel 1 | 343 | M | Israel | Dahomey | 1 | 283 | 0.931 | NA | NA | NA | 0 | 40 | 0.0000000 |
687 | 3 | Israel 1 | 344 | F | Israel | Israel | 1 | 269 | NA | 0 | 0 | 0 | NA | NA | NA |
688 | 3 | Israel 1 | 344 | M | Israel | Israel | 1 | 276 | 1.060 | NA | NA | NA | 138 | 0 | 1.0000000 |
689 | 3 | Sweden 1 | 345 | F | Sweden | Israel | 1 | 271 | 1.038 | 14 | 15 | 29 | NA | NA | NA |
690 | 3 | Israel 1 | 345 | M | Israel | Sweden | 1 | 274 | 1.032 | NA | NA | NA | 30 | 6 | 0.8333333 |
691 | 3 | Barcelona 1 | 346 | F | Barcelona | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
692 | 3 | Sweden 1 | 346 | M | Sweden | Barcelona | 1 | 266 | 1.035 | NA | NA | NA | 0 | 47 | 0.0000000 |
693 | 3 | Brownsville 1 | 347 | F | Brownsville | Sweden | 1 | 259 | 1.106 | 36 | 24 | 60 | NA | NA | NA |
694 | 3 | Sweden 1 | 347 | M | Sweden | Brownsville | 1 | 253 | 1.054 | NA | NA | NA | 53 | 6 | 0.8983051 |
695 | 3 | Dahomey 1 | 348 | F | Dahomey | Sweden | 1 | 270 | NA | 0 | 0 | 0 | NA | NA | NA |
696 | 3 | Sweden 1 | 348 | M | Sweden | Dahomey | 1 | 261 | 1.074 | NA | NA | NA | 0 | 37 | 0.0000000 |
697 | 3 | Israel 1 | 349 | F | Israel | Sweden | 1 | 275 | 1.167 | 32 | 28 | 60 | NA | NA | NA |
698 | 3 | Sweden 1 | 349 | M | Sweden | Israel | 1 | 288 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
699 | 3 | Sweden 1 | 350 | F | Sweden | Sweden | 1 | 249 | 1.111 | 30 | 26 | 56 | NA | NA | NA |
700 | 3 | Sweden 1 | 350 | M | Sweden | Sweden | 1 | 270 | 1.072 | NA | NA | NA | 85 | 17 | 0.8333333 |
701 | 3 | Barcelona 1 | 351 | F | Barcelona | Barcelona | 1 | 262 | NA | NA | NA | NA | NA | NA | NA |
702 | 3 | Barcelona 1 | 351 | M | Barcelona | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
703 | 3 | Brownsville 1 | 352 | F | Brownsville | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
704 | 3 | Barcelona 1 | 352 | M | Barcelona | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
705 | 3 | Dahomey 1 | 353 | F | Dahomey | Barcelona | 1 | 247 | 1.113 | 15 | 14 | 29 | NA | NA | NA |
706 | 3 | Barcelona 1 | 353 | M | Barcelona | Dahomey | 1 | 267 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
707 | 3 | Israel 1 | 354 | F | Israel | Barcelona | 1 | 258 | 1.210 | 29 | 18 | 47 | NA | NA | NA |
708 | 3 | Barcelona 1 | 354 | M | Barcelona | Israel | 1 | 261 | 1.137 | NA | NA | NA | 50 | 0 | 1.0000000 |
709 | 3 | Sweden 1 | 355 | F | Sweden | Barcelona | 1 | 252 | 1.057 | 26 | 23 | 49 | NA | NA | NA |
710 | 3 | Barcelona 1 | 355 | M | Barcelona | Sweden | 1 | 249 | 1.060 | NA | NA | NA | 71 | 13 | 0.8452381 |
711 | 3 | Barcelona 1 | 356 | F | Barcelona | Brownsville | 1 | 267 | 1.074 | 38 | 35 | 73 | NA | NA | NA |
712 | 3 | Brownsville 1 | 356 | M | Brownsville | Barcelona | 1 | 256 | 1.082 | NA | NA | NA | 0 | 87 | 0.0000000 |
713 | 3 | Brownsville 1 | 357 | F | Brownsville | Brownsville | 1 | 268 | NA | NA | NA | NA | NA | NA | NA |
714 | 3 | Brownsville 1 | 357 | M | Brownsville | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
715 | 3 | Dahomey 1 | 358 | F | Dahomey | Brownsville | 1 | 246 | 1.220 | 0 | 0 | 0 | NA | NA | NA |
716 | 3 | Brownsville 1 | 358 | M | Brownsville | Dahomey | 1 | 249 | 1.094 | NA | NA | NA | 0 | 45 | 0.0000000 |
717 | 3 | Israel 1 | 359 | F | Israel | Brownsville | 1 | 265 | 1.105 | 0 | 0 | 0 | NA | NA | NA |
718 | 3 | Brownsville 1 | 359 | M | Brownsville | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
719 | 3 | Sweden 1 | 360 | F | Sweden | Brownsville | 1 | 247 | 1.285 | NA | NA | NA | NA | NA | NA |
720 | 3 | Brownsville 1 | 360 | M | Brownsville | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
721 | 3 | Barcelona 1 | 361 | F | Barcelona | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
722 | 3 | Dahomey 1 | 361 | M | Dahomey | Barcelona | 1 | 258 | 1.071 | NA | NA | NA | 151 | 1 | 0.9934211 |
723 | 3 | Brownsville 1 | 362 | F | Brownsville | Dahomey | 1 | 255 | 1.178 | 5 | 5 | 10 | NA | NA | NA |
724 | 3 | Dahomey 1 | 362 | M | Dahomey | Brownsville | 1 | 254 | 1.087 | NA | NA | NA | 150 | 2 | 0.9868421 |
725 | 3 | Dahomey 1 | 363 | F | Dahomey | Dahomey | 1 | 293 | 1.052 | 21 | 32 | 53 | NA | NA | NA |
726 | 3 | Dahomey 1 | 363 | M | Dahomey | Dahomey | 1 | 270 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
727 | 3 | Israel 1 | 364 | F | Israel | Dahomey | 1 | 265 | 1.233 | 44 | 32 | 76 | NA | NA | NA |
728 | 3 | Dahomey 1 | 364 | M | Dahomey | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
729 | 3 | Sweden 1 | 365 | F | Sweden | Dahomey | 1 | 266 | NA | 20 | 14 | 34 | NA | NA | NA |
730 | 3 | Dahomey 1 | 365 | M | Dahomey | Sweden | 1 | 247 | 1.060 | NA | NA | NA | 112 | 30 | 0.7887324 |
731 | 3 | Barcelona 1 | 366 | F | Barcelona | Israel | 1 | 260 | 1.179 | 0 | 0 | 0 | NA | NA | NA |
732 | 3 | Israel 1 | 366 | M | Israel | Barcelona | 1 | 264 | 1.038 | NA | NA | NA | 0 | 0 | 0.0000000 |
733 | 3 | Brownsville 1 | 367 | F | Brownsville | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
734 | 3 | Israel 1 | 367 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
735 | 3 | Dahomey 1 | 368 | F | Dahomey | Israel | 1 | 262 | 1.106 | 26 | 25 | 51 | NA | NA | NA |
736 | 3 | Israel 1 | 368 | M | Israel | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
737 | 3 | Israel 1 | 369 | F | Israel | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
738 | 3 | Israel 1 | 369 | M | Israel | Israel | 1 | 256 | 1.134 | NA | NA | NA | 1 | 3 | 0.2500000 |
739 | 3 | Sweden 1 | 370 | F | Sweden | Israel | 1 | 259 | 1.214 | 8 | 18 | 26 | NA | NA | NA |
740 | 3 | Israel 1 | 370 | M | Israel | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
741 | 3 | Barcelona 1 | 371 | F | Barcelona | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
742 | 3 | Sweden 1 | 371 | M | Sweden | Barcelona | 1 | 257 | 1.005 | NA | NA | NA | 73 | 36 | 0.6697248 |
743 | 3 | Brownsville 1 | 372 | F | Brownsville | Sweden | 1 | 263 | 1.057 | 31 | 21 | 52 | NA | NA | NA |
744 | 3 | Sweden 1 | 372 | M | Sweden | Brownsville | 1 | 270 | 0.928 | NA | NA | NA | 0 | 11 | 0.0000000 |
745 | 3 | Dahomey 1 | 373 | F | Dahomey | Sweden | 1 | 262 | 1.068 | 24 | 28 | 52 | NA | NA | NA |
746 | 3 | Sweden 1 | 373 | M | Sweden | Dahomey | 1 | 271 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
747 | 3 | Israel 1 | 374 | F | Israel | Sweden | 1 | 278 | 1.133 | 27 | 30 | 57 | NA | NA | NA |
748 | 3 | Sweden 1 | 374 | M | Sweden | Israel | 1 | 261 | NA | NA | NA | NA | 59 | 109 | 0.3511905 |
749 | 3 | Sweden 1 | 375 | F | Sweden | Sweden | 1 | 268 | 1.140 | 38 | 31 | 69 | NA | NA | NA |
750 | 3 | Sweden 1 | 375 | M | Sweden | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
751 | 3 | Barcelona 1 | 376 | F | Barcelona | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
752 | 3 | Barcelona 1 | 376 | M | Barcelona | Barcelona | 1 | 268 | 0.926 | NA | NA | NA | 0 | 19 | 0.0000000 |
753 | 3 | Brownsville 1 | 377 | F | Brownsville | Barcelona | 1 | 243 | 1.369 | 0 | 0 | 0 | NA | NA | NA |
754 | 3 | Barcelona 1 | 377 | M | Barcelona | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
755 | 3 | Dahomey 1 | 378 | F | Dahomey | Barcelona | 1 | 264 | NA | 0 | 0 | 0 | NA | NA | NA |
756 | 3 | Barcelona 1 | 378 | M | Barcelona | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
757 | 3 | Israel 1 | 379 | F | Israel | Barcelona | 1 | 262 | 1.202 | 31 | 37 | 68 | NA | NA | NA |
758 | 3 | Barcelona 1 | 379 | M | Barcelona | Israel | 1 | 285 | 1.016 | NA | NA | NA | 0 | 32 | 0.0000000 |
759 | 3 | Sweden 1 | 380 | F | Sweden | Barcelona | 1 | 253 | NA | 0 | 0 | 0 | NA | NA | NA |
760 | 3 | Barcelona 1 | 380 | M | Barcelona | Sweden | 1 | 289 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
761 | 3 | Barcelona 1 | 381 | F | Barcelona | Brownsville | 1 | 259 | 1.303 | 47 | 53 | 100 | NA | NA | NA |
762 | 3 | Brownsville 1 | 381 | M | Brownsville | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
763 | 3 | Brownsville 1 | 382 | F | Brownsville | Brownsville | 1 | 262 | NA | 24 | 11 | 35 | NA | NA | NA |
764 | 3 | Brownsville 1 | 382 | M | Brownsville | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
765 | 3 | Dahomey 1 | 383 | F | Dahomey | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
766 | 3 | Brownsville 1 | 383 | M | Brownsville | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
767 | 3 | Israel 1 | 384 | F | Israel | Brownsville | 1 | 273 | 1.174 | 0 | 0 | 0 | NA | NA | NA |
768 | 3 | Brownsville 1 | 384 | M | Brownsville | Israel | 1 | 274 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
769 | 3 | Sweden 1 | 385 | F | Sweden | Brownsville | 1 | NA | 1.086 | 27 | 29 | 56 | NA | NA | NA |
770 | 3 | Brownsville 1 | 385 | M | Brownsville | Sweden | 1 | NA | 0.969 | NA | NA | NA | 0 | 11 | 0.0000000 |
771 | 3 | Barcelona 1 | 386 | F | Barcelona | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
772 | 3 | Dahomey 1 | 386 | M | Dahomey | Barcelona | 1 | 287 | NA | NA | NA | NA | 0 | 65 | 0.0000000 |
773 | 3 | Brownsville 1 | 387 | F | Brownsville | Dahomey | 1 | 262 | 1.166 | 37 | 27 | 64 | NA | NA | NA |
774 | 3 | Dahomey 1 | 387 | M | Dahomey | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
775 | 3 | Dahomey 1 | 388 | F | Dahomey | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
776 | 3 | Dahomey 1 | 388 | M | Dahomey | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
777 | 3 | Israel 1 | 389 | F | Israel | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
778 | 3 | Dahomey 1 | 389 | M | Dahomey | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
781 | 3 | Barcelona 1 | 391 | F | Barcelona | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
782 | 3 | Israel 1 | 391 | M | Israel | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
783 | 3 | Brownsville 1 | 392 | F | Brownsville | Israel | 1 | 255 | 1.190 | 0 | 0 | 0 | NA | NA | NA |
784 | 3 | Israel 1 | 392 | M | Israel | Brownsville | 1 | 266 | NA | NA | NA | NA | 0 | 63 | 0.0000000 |
785 | 3 | Dahomey 1 | 393 | F | Dahomey | Israel | 1 | 260 | 1.134 | 26 | 31 | 57 | NA | NA | NA |
786 | 3 | Israel 1 | 393 | M | Israel | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
787 | 3 | Israel 1 | 394 | F | Israel | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
788 | 3 | Israel 1 | 394 | M | Israel | Israel | 1 | 262 | 1.116 | NA | NA | NA | 92 | 2 | 0.9787234 |
789 | 3 | Sweden 1 | 395 | F | Sweden | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
790 | 3 | Israel 1 | 395 | M | Israel | Sweden | 1 | 273 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
793 | 3 | Brownsville 1 | 397 | F | Brownsville | Sweden | 1 | 262 | 1.183 | 13 | 0 | 13 | NA | NA | NA |
794 | 3 | Sweden 1 | 397 | M | Sweden | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
795 | 3 | Dahomey 1 | 398 | F | Dahomey | Sweden | 1 | 274 | 0.940 | 27 | 29 | 56 | NA | NA | NA |
796 | 3 | Sweden 1 | 398 | M | Sweden | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
797 | 3 | Israel 1 | 399 | F | Israel | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
798 | 3 | Sweden 1 | 399 | M | Sweden | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
799 | 3 | Sweden 1 | 400 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
800 | 3 | Sweden 1 | 400 | M | Sweden | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
801 | 3 | Barcelona 2 | 401 | F | Barcelona | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
802 | 3 | Barcelona 2 | 401 | M | Barcelona | Barcelona | 1 | 255 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
803 | 3 | Brownsville 2 | 402 | F | Brownsville | Barcelona | 1 | 244 | 1.108 | 23 | 20 | 43 | NA | NA | NA |
804 | 3 | Barcelona 2 | 402 | M | Barcelona | Brownsville | 1 | 249 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
805 | 3 | Dahomey 2 | 403 | F | Dahomey | Barcelona | 1 | 265 | 1.024 | 26 | 29 | 55 | NA | NA | NA |
806 | 3 | Barcelona 2 | 403 | M | Barcelona | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
807 | 3 | Israel 2 | 404 | F | Israel | Barcelona | 1 | 265 | 1.015 | 20 | 18 | 38 | NA | NA | NA |
808 | 3 | Barcelona 2 | 404 | M | Barcelona | Israel | 1 | 264 | 0.955 | NA | NA | NA | 119 | 0 | 1.0000000 |
809 | 3 | Sweden 2 | 405 | F | Sweden | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
810 | 3 | Barcelona 2 | 405 | M | Barcelona | Sweden | 1 | 266 | 0.956 | NA | NA | NA | 0 | 35 | 0.0000000 |
811 | 3 | Barcelona 2 | 406 | F | Barcelona | Brownsville | 1 | 263 | 1.119 | 18 | 8 | 26 | NA | NA | NA |
812 | 3 | Brownsville 2 | 406 | M | Brownsville | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
813 | 3 | Brownsville 2 | 407 | F | Brownsville | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
814 | 3 | Brownsville 2 | 407 | M | Brownsville | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
815 | 3 | Dahomey 2 | 408 | F | Dahomey | Brownsville | 1 | 245 | 1.143 | 31 | 32 | 63 | NA | NA | NA |
816 | 3 | Brownsville 2 | 408 | M | Brownsville | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
817 | 3 | Israel 2 | 409 | F | Israel | Brownsville | 1 | 258 | 1.172 | 37 | 34 | 71 | NA | NA | NA |
818 | 3 | Brownsville 2 | 409 | M | Brownsville | Israel | 1 | 269 | 1.025 | NA | NA | NA | 67 | 44 | 0.6036036 |
819 | 3 | Sweden 2 | 410 | F | Sweden | Brownsville | 1 | 262 | 1.183 | 20 | 20 | 40 | NA | NA | NA |
820 | 3 | Brownsville 2 | 410 | M | Brownsville | Sweden | 1 | 261 | 1.006 | NA | NA | NA | 96 | 0 | 1.0000000 |
821 | 3 | Barcelona 2 | 411 | F | Barcelona | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
822 | 3 | Dahomey 2 | 411 | M | Dahomey | Barcelona | 1 | 257 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
823 | 3 | Brownsville 2 | 412 | F | Brownsville | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
824 | 3 | Dahomey 2 | 412 | M | Dahomey | Brownsville | 1 | 255 | 1.068 | NA | NA | NA | 32 | 2 | 0.9411765 |
825 | 3 | Dahomey 2 | 413 | F | Dahomey | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
826 | 3 | Dahomey 2 | 413 | M | Dahomey | Dahomey | 1 | 263 | NA | NA | NA | NA | 8 | 20 | 0.2857143 |
827 | 3 | Israel 2 | 414 | F | Israel | Dahomey | 1 | 242 | 1.094 | 23 | 31 | 54 | NA | NA | NA |
828 | 3 | Dahomey 2 | 414 | M | Dahomey | Israel | 1 | 262 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
829 | 3 | Sweden 2 | 415 | F | Sweden | Dahomey | 1 | 272 | NA | 0 | 0 | 0 | NA | NA | NA |
830 | 3 | Dahomey 2 | 415 | M | Dahomey | Sweden | 1 | 263 | 1.023 | NA | NA | NA | 121 | 2 | 0.9837398 |
831 | 3 | Barcelona 2 | 416 | F | Barcelona | Israel | 1 | 276 | 1.123 | 27 | 31 | 58 | NA | NA | NA |
832 | 3 | Israel 2 | 416 | M | Israel | Barcelona | 1 | 251 | 1.055 | NA | NA | NA | 83 | 68 | 0.5496689 |
833 | 3 | Brownsville 2 | 417 | F | Brownsville | Israel | 1 | 285 | 1.013 | 12 | 30 | 42 | NA | NA | NA |
834 | 3 | Israel 2 | 417 | M | Israel | Brownsville | 1 | 261 | NA | NA | NA | NA | 58 | 0 | 1.0000000 |
835 | 3 | Dahomey 2 | 418 | F | Dahomey | Israel | 1 | 271 | 1.137 | 27 | 23 | 50 | NA | NA | NA |
836 | 3 | Israel 2 | 418 | M | Israel | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
837 | 3 | Israel 2 | 419 | F | Israel | Israel | 1 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
838 | 3 | Israel 2 | 419 | M | Israel | Israel | 1 | 259 | 0.977 | NA | NA | NA | 0 | 45 | 0.0000000 |
839 | 3 | Sweden 2 | 420 | F | Sweden | Israel | 1 | 267 | 1.022 | 12 | 23 | 35 | NA | NA | NA |
840 | 3 | Israel 2 | 420 | M | Israel | Sweden | 1 | 258 | 1.017 | NA | NA | NA | 76 | 0 | 1.0000000 |
841 | 3 | Barcelona 2 | 421 | F | Barcelona | Sweden | 1 | 257 | NA | 0 | 0 | 0 | NA | NA | NA |
842 | 3 | Sweden 2 | 421 | M | Sweden | Barcelona | 1 | 258 | NA | NA | NA | NA | 119 | 0 | 1.0000000 |
843 | 3 | Brownsville 2 | 422 | F | Brownsville | Sweden | 1 | 264 | 1.133 | 15 | 18 | 33 | NA | NA | NA |
844 | 3 | Sweden 2 | 422 | M | Sweden | Brownsville | 1 | NA | 0.938 | NA | NA | NA | 0 | 40 | 0.0000000 |
845 | 3 | Dahomey 2 | 423 | F | Dahomey | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
846 | 3 | Sweden 2 | 423 | M | Sweden | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
847 | 3 | Israel 2 | 424 | F | Israel | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
848 | 3 | Sweden 2 | 424 | M | Sweden | Israel | 1 | 283 | 0.875 | NA | NA | NA | 0 | 56 | 0.0000000 |
849 | 3 | Sweden 2 | 425 | F | Sweden | Sweden | 1 | 247 | NA | 0 | 0 | 0 | NA | NA | NA |
850 | 3 | Sweden 2 | 425 | M | Sweden | Sweden | 1 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
851 | 3 | Barcelona 2 | 426 | F | Barcelona | Barcelona | 1 | 267 | NA | 37 | 20 | 57 | NA | NA | NA |
852 | 3 | Barcelona 2 | 426 | M | Barcelona | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
855 | 3 | Dahomey 2 | 428 | F | Dahomey | Barcelona | 1 | 247 | 1.175 | 35 | 30 | 65 | NA | NA | NA |
856 | 3 | Barcelona 2 | 428 | M | Barcelona | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
857 | 3 | Israel 2 | 429 | F | Israel | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
858 | 3 | Barcelona 2 | 429 | M | Barcelona | Israel | 1 | 263 | 1.051 | NA | NA | NA | 93 | 15 | 0.8611111 |
859 | 3 | Sweden 2 | 430 | F | Sweden | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
860 | 3 | Barcelona 2 | 430 | M | Barcelona | Sweden | 1 | 268 | 0.949 | NA | NA | NA | 0 | 115 | 0.0000000 |
861 | 3 | Barcelona 2 | 431 | F | Barcelona | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
862 | 3 | Brownsville 2 | 431 | M | Brownsville | Barcelona | 1 | 268 | 1.033 | NA | NA | NA | 0 | 94 | 0.0000000 |
863 | 3 | Brownsville 2 | 432 | F | Brownsville | Brownsville | 1 | 249 | NA | 0 | 0 | 0 | NA | NA | NA |
864 | 3 | Brownsville 2 | 432 | M | Brownsville | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
865 | 3 | Dahomey 2 | 433 | F | Dahomey | Brownsville | 1 | 250 | NA | 38 | 38 | 76 | NA | NA | NA |
866 | 3 | Brownsville 2 | 433 | M | Brownsville | Dahomey | 1 | 263 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
867 | 3 | Israel 2 | 434 | F | Israel | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
868 | 3 | Brownsville 2 | 434 | M | Brownsville | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
869 | 3 | Sweden 2 | 435 | F | Sweden | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
870 | 3 | Brownsville 2 | 435 | M | Brownsville | Sweden | 1 | 263 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
871 | 3 | Barcelona 2 | 436 | F | Barcelona | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
872 | 3 | Dahomey 2 | 436 | M | Dahomey | Barcelona | 1 | 249 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
873 | 3 | Brownsville 2 | 437 | F | Brownsville | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
874 | 3 | Dahomey 2 | 437 | M | Dahomey | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
875 | 3 | Dahomey 2 | 438 | F | Dahomey | Dahomey | 1 | 249 | NA | 0 | 0 | 0 | NA | NA | NA |
876 | 3 | Dahomey 2 | 438 | M | Dahomey | Dahomey | 1 | 248 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
877 | 3 | Israel 2 | 439 | F | Israel | Dahomey | 1 | 264 | NA | 0 | 0 | 0 | NA | NA | NA |
878 | 3 | Dahomey 2 | 439 | M | Dahomey | Israel | 1 | 257 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
879 | 3 | Sweden 2 | 440 | F | Sweden | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
880 | 3 | Dahomey 2 | 440 | M | Dahomey | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
881 | 3 | Barcelona 2 | 441 | F | Barcelona | Israel | 1 | 252 | NA | 0 | 0 | 0 | NA | NA | NA |
882 | 3 | Israel 2 | 441 | M | Israel | Barcelona | 1 | 248 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
883 | 3 | Brownsville 2 | 442 | F | Brownsville | Israel | 1 | 247 | NA | 0 | 0 | 0 | NA | NA | NA |
884 | 3 | Israel 2 | 442 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
885 | 3 | Dahomey 2 | 443 | F | Dahomey | Israel | 1 | 241 | 1.142 | 0 | 0 | 0 | NA | NA | NA |
886 | 3 | Israel 2 | 443 | M | Israel | Dahomey | 1 | NA | NA | NA | NA | NA | 0 | 56 | 0.0000000 |
887 | 3 | Israel 2 | 444 | F | Israel | Israel | 1 | 247 | NA | 0 | 0 | 0 | NA | NA | NA |
888 | 3 | Israel 2 | 444 | M | Israel | Israel | 1 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
889 | 3 | Sweden 2 | 445 | F | Sweden | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
890 | 3 | Israel 2 | 445 | M | Israel | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
891 | 3 | Barcelona 2 | 446 | F | Barcelona | Sweden | 1 | 263 | 1.052 | 29 | 26 | 55 | NA | NA | NA |
892 | 3 | Sweden 2 | 446 | M | Sweden | Barcelona | 1 | 263 | 1.004 | NA | NA | NA | 137 | 0 | 1.0000000 |
893 | 3 | Brownsville 2 | 447 | F | Brownsville | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
894 | 3 | Sweden 2 | 447 | M | Sweden | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
895 | 3 | Dahomey 2 | 448 | F | Dahomey | Sweden | 1 | 264 | NA | 0 | 0 | 0 | NA | NA | NA |
896 | 3 | Sweden 2 | 448 | M | Sweden | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
897 | 3 | Israel 2 | 449 | F | Israel | Sweden | 1 | 255 | NA | 0 | 0 | 0 | NA | NA | NA |
898 | 3 | Sweden 2 | 449 | M | Sweden | Israel | 1 | 247 | 1.086 | NA | NA | NA | 95 | 12 | 0.8878505 |
899 | 3 | Sweden 2 | 450 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
900 | 3 | Sweden 2 | 450 | M | Sweden | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
901 | 3 | Barcelona 2 | 451 | F | Barcelona | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
902 | 3 | Barcelona 2 | 451 | M | Barcelona | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
903 | 3 | Brownsville 2 | 452 | F | Brownsville | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
904 | 3 | Barcelona 2 | 452 | M | Barcelona | Brownsville | 1 | 287 | 0.913 | NA | NA | NA | 0 | 57 | 0.0000000 |
905 | 3 | Dahomey 2 | 453 | F | Dahomey | Barcelona | 1 | 248 | 1.170 | 8 | 11 | 19 | NA | NA | NA |
906 | 3 | Barcelona 2 | 453 | M | Barcelona | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
907 | 3 | Israel 2 | 454 | F | Israel | Barcelona | 1 | 261 | 1.252 | 51 | 42 | 93 | NA | NA | NA |
908 | 3 | Barcelona 2 | 454 | M | Barcelona | Israel | 1 | 251 | NA | NA | NA | NA | 92 | 7 | 0.9292929 |
909 | 3 | Sweden 2 | 455 | F | Sweden | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
910 | 3 | Barcelona 2 | 455 | M | Barcelona | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
911 | 3 | Barcelona 2 | 456 | F | Barcelona | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
912 | 3 | Brownsville 2 | 456 | M | Brownsville | Barcelona | 1 | 260 | 1.056 | NA | NA | NA | 67 | 11 | 0.8589744 |
913 | 3 | Brownsville 2 | 457 | F | Brownsville | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
914 | 3 | Brownsville 2 | 457 | M | Brownsville | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
915 | 3 | Dahomey 2 | 458 | F | Dahomey | Brownsville | 1 | NA | 1.023 | 6 | 11 | 17 | NA | NA | NA |
916 | 3 | Brownsville 2 | 458 | M | Brownsville | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
917 | 3 | Israel 2 | 459 | F | Israel | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
918 | 3 | Brownsville 2 | 459 | M | Brownsville | Israel | 1 | 267 | 1.110 | NA | NA | NA | 50 | 18 | 0.7352941 |
919 | 3 | Sweden 2 | 460 | F | Sweden | Brownsville | 1 | 290 | 0.979 | 22 | 16 | 38 | NA | NA | NA |
920 | 3 | Brownsville 2 | 460 | M | Brownsville | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
921 | 3 | Barcelona 2 | 461 | F | Barcelona | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
922 | 3 | Dahomey 2 | 461 | M | Dahomey | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
923 | 3 | Brownsville 2 | 462 | F | Brownsville | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
924 | 3 | Dahomey 2 | 462 | M | Dahomey | Brownsville | 1 | 265 | 1.088 | NA | NA | NA | 0 | 21 | 0.0000000 |
925 | 3 | Dahomey 2 | 463 | F | Dahomey | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
926 | 3 | Dahomey 2 | 463 | M | Dahomey | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
927 | 3 | Israel 2 | 464 | F | Israel | Dahomey | 1 | 290 | 0.955 | 37 | 23 | 60 | NA | NA | NA |
928 | 3 | Dahomey 2 | 464 | M | Dahomey | Israel | 1 | 256 | 1.051 | NA | NA | NA | 15 | 18 | 0.4545455 |
929 | 3 | Sweden 2 | 465 | F | Sweden | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
930 | 3 | Dahomey 2 | 465 | M | Dahomey | Sweden | 1 | 259 | NA | NA | NA | NA | 2 | 25 | 0.0740741 |
931 | 3 | Barcelona 2 | 466 | F | Barcelona | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
932 | 3 | Israel 2 | 466 | M | Israel | Barcelona | 1 | 251 | 0.964 | NA | NA | NA | 69 | 0 | 1.0000000 |
933 | 3 | Brownsville 2 | 467 | F | Brownsville | Israel | 1 | 267 | 1.126 | 29 | 27 | 56 | NA | NA | NA |
934 | 3 | Israel 2 | 467 | M | Israel | Brownsville | 1 | 285 | 1.005 | NA | NA | NA | 0 | 28 | 0.0000000 |
935 | 3 | Dahomey 2 | 468 | F | Dahomey | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
936 | 3 | Israel 2 | 468 | M | Israel | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
937 | 3 | Israel 2 | 469 | F | Israel | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
938 | 3 | Israel 2 | 469 | M | Israel | Israel | 1 | 255 | 1.122 | NA | NA | NA | 83 | 29 | 0.7410714 |
939 | 3 | Sweden 2 | 470 | F | Sweden | Israel | 1 | 262 | 0.991 | 17 | 21 | 38 | NA | NA | NA |
940 | 3 | Israel 2 | 470 | M | Israel | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
941 | 3 | Barcelona 2 | 471 | F | Barcelona | Sweden | 1 | 262 | 1.204 | 31 | 39 | 70 | NA | NA | NA |
942 | 3 | Sweden 2 | 471 | M | Sweden | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
943 | 3 | Brownsville 2 | 472 | F | Brownsville | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
944 | 3 | Sweden 2 | 472 | M | Sweden | Brownsville | 1 | 281 | 0.983 | NA | NA | NA | 0 | 24 | 0.0000000 |
945 | 3 | Dahomey 2 | 473 | F | Dahomey | Sweden | 1 | 260 | 1.133 | 9 | 14 | 23 | NA | NA | NA |
946 | 3 | Sweden 2 | 473 | M | Sweden | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
947 | 3 | Israel 2 | 474 | F | Israel | Sweden | 1 | 256 | 1.217 | 29 | 38 | 67 | NA | NA | NA |
948 | 3 | Sweden 2 | 474 | M | Sweden | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
951 | 3 | Barcelona 2 | 476 | F | Barcelona | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
952 | 3 | Barcelona 2 | 476 | M | Barcelona | Barcelona | 1 | 283 | NA | NA | NA | NA | 0 | 24 | 0.0000000 |
961 | 3 | Barcelona 2 | 481 | F | Barcelona | Brownsville | 1 | 268 | 1.019 | 0 | 0 | 0 | NA | NA | NA |
962 | 3 | Brownsville 2 | 481 | M | Brownsville | Barcelona | 1 | 262 | 0.965 | NA | NA | NA | 0 | 33 | 0.0000000 |
963 | 3 | Brownsville 2 | 482 | F | Brownsville | Brownsville | 1 | 284 | NA | 21 | 24 | 45 | NA | NA | NA |
964 | 3 | Brownsville 2 | 482 | M | Brownsville | Brownsville | 1 | 250 | 1.086 | NA | NA | NA | 48 | 10 | 0.8275862 |
965 | 3 | Dahomey 2 | 483 | F | Dahomey | Brownsville | 1 | 270 | 0.986 | 23 | 35 | 58 | NA | NA | NA |
966 | 3 | Brownsville 2 | 483 | M | Brownsville | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
967 | 3 | Israel 2 | 484 | F | Israel | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
968 | 3 | Brownsville 2 | 484 | M | Brownsville | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
969 | 3 | Sweden 2 | 485 | F | Sweden | Brownsville | 1 | 249 | NA | 0 | 0 | 0 | NA | NA | NA |
970 | 3 | Brownsville 2 | 485 | M | Brownsville | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
971 | 3 | Barcelona 2 | 486 | F | Barcelona | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
972 | 3 | Dahomey 2 | 486 | M | Dahomey | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
973 | 3 | Brownsville 2 | 487 | F | Brownsville | Dahomey | 1 | 266 | 1.133 | 0 | 0 | 0 | NA | NA | NA |
974 | 3 | Dahomey 2 | 487 | M | Dahomey | Brownsville | 1 | 248 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
975 | 3 | Dahomey 2 | 488 | F | Dahomey | Dahomey | 1 | 264 | 1.075 | 10 | 11 | 21 | NA | NA | NA |
976 | 3 | Dahomey 2 | 488 | M | Dahomey | Dahomey | 1 | 265 | 0.992 | NA | NA | NA | 0 | 12 | 0.0000000 |
977 | 3 | Israel 2 | 489 | F | Israel | Dahomey | 1 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
978 | 3 | Dahomey 2 | 489 | M | Dahomey | Israel | 1 | NA | 1.041 | NA | NA | NA | 89 | 18 | 0.8317757 |
979 | 3 | Sweden 2 | 490 | F | Sweden | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
980 | 3 | Dahomey 2 | 490 | M | Dahomey | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
981 | 3 | Barcelona 2 | 491 | F | Barcelona | Israel | 1 | NA | NA | NA | NA | NA | NA | NA | NA |
982 | 3 | Israel 2 | 491 | M | Israel | Barcelona | 1 | NA | 0.883 | NA | NA | NA | 0 | 42 | 0.0000000 |
983 | 3 | Brownsville 2 | 492 | F | Brownsville | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
984 | 3 | Israel 2 | 492 | M | Israel | Brownsville | 1 | 297 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
985 | 3 | Dahomey 2 | 493 | F | Dahomey | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
986 | 3 | Israel 2 | 493 | M | Israel | Dahomey | 1 | 264 | NA | NA | NA | NA | 107 | 0 | 1.0000000 |
987 | 3 | Israel 2 | 494 | F | Israel | Israel | 1 | 272 | 1.110 | 26 | 23 | 49 | NA | NA | NA |
988 | 3 | Israel 2 | 494 | M | Israel | Israel | 1 | 268 | 0.999 | NA | NA | NA | 47 | 1 | 0.9791667 |
989 | 3 | Sweden 2 | 495 | F | Sweden | Israel | 1 | 261 | 1.190 | 34 | 35 | 69 | NA | NA | NA |
990 | 3 | Israel 2 | 495 | M | Israel | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1001 | 4 | Barcelona 1 | 501 | F | Barcelona | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1002 | 4 | Barcelona 1 | 501 | M | Barcelona | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1003 | 4 | Brownsville 1 | 502 | F | Brownsville | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1004 | 4 | Barcelona 1 | 502 | M | Barcelona | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1005 | 4 | Dahomey 1 | 503 | F | Dahomey | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1006 | 4 | Barcelona 1 | 503 | M | Barcelona | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1007 | 4 | Israel 1 | 504 | F | Israel | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1008 | 4 | Barcelona 1 | 504 | M | Barcelona | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1009 | 4 | Sweden 1 | 505 | F | Sweden | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1010 | 4 | Barcelona 1 | 505 | M | Barcelona | Sweden | 1 | 247 | 0.939 | NA | NA | NA | 0 | 49 | 0.0000000 |
1011 | 4 | Barcelona 1 | 506 | F | Barcelona | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1012 | 4 | Brownsville 1 | 506 | M | Brownsville | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1013 | 4 | Brownsville 1 | 507 | F | Brownsville | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1014 | 4 | Brownsville 1 | 507 | M | Brownsville | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1015 | 4 | Dahomey 1 | 508 | F | Dahomey | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1016 | 4 | Brownsville 1 | 508 | M | Brownsville | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1017 | 4 | Israel 1 | 509 | F | Israel | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1018 | 4 | Brownsville 1 | 509 | M | Brownsville | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1019 | 4 | Sweden 1 | 510 | F | Sweden | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1020 | 4 | Brownsville 1 | 510 | M | Brownsville | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1021 | 4 | Barcelona 1 | 511 | F | Barcelona | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1022 | 4 | Dahomey 1 | 511 | M | Dahomey | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1023 | 4 | Brownsville 1 | 512 | F | Brownsville | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1024 | 4 | Dahomey 1 | 512 | M | Dahomey | Brownsville | 1 | 246 | 0.879 | NA | NA | NA | 0 | 6 | 0.0000000 |
1025 | 4 | Dahomey 1 | 513 | F | Dahomey | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1026 | 4 | Dahomey 1 | 513 | M | Dahomey | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1027 | 4 | Israel 1 | 514 | F | Israel | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1028 | 4 | Dahomey 1 | 514 | M | Dahomey | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1029 | 4 | Sweden 1 | 515 | F | Sweden | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1030 | 4 | Dahomey 1 | 515 | M | Dahomey | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1031 | 4 | Barcelona 1 | 516 | F | Barcelona | Israel | 1 | 246 | 1.001 | 13 | 13 | 26 | NA | NA | NA |
1032 | 4 | Israel 1 | 516 | M | Israel | Barcelona | 1 | 248 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1033 | 4 | Brownsville 1 | 517 | F | Brownsville | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1034 | 4 | Israel 1 | 517 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1035 | 4 | Dahomey 1 | 518 | F | Dahomey | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1036 | 4 | Israel 1 | 518 | M | Israel | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1037 | 4 | Israel 1 | 519 | F | Israel | Israel | 1 | 246 | NA | 0 | 0 | 0 | NA | NA | NA |
1038 | 4 | Israel 1 | 519 | M | Israel | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1039 | 4 | Sweden 1 | 520 | F | Sweden | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1040 | 4 | Israel 1 | 520 | M | Israel | Sweden | 1 | NA | 1.059 | NA | NA | NA | 90 | 3 | 0.9677419 |
1041 | 4 | Barcelona 1 | 521 | F | Barcelona | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1042 | 4 | Sweden 1 | 521 | M | Sweden | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1043 | 4 | Brownsville 1 | 522 | F | Brownsville | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1044 | 4 | Sweden 1 | 522 | M | Sweden | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1045 | 4 | Dahomey 1 | 523 | F | Dahomey | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1046 | 4 | Sweden 1 | 523 | M | Sweden | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1047 | 4 | Israel 1 | 524 | F | Israel | Sweden | 1 | 247 | NA | 25 | 22 | 47 | NA | NA | NA |
1048 | 4 | Sweden 1 | 524 | M | Sweden | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1049 | 4 | Sweden 1 | 525 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1050 | 4 | Sweden 1 | 525 | M | Sweden | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1051 | 4 | Barcelona 1 | 526 | F | Barcelona | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1052 | 4 | Barcelona 1 | 526 | M | Barcelona | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1053 | 4 | Brownsville 1 | 527 | F | Brownsville | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1054 | 4 | Barcelona 1 | 527 | M | Barcelona | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1055 | 4 | Dahomey 1 | 528 | F | Dahomey | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1056 | 4 | Barcelona 1 | 528 | M | Barcelona | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1057 | 4 | Israel 1 | 529 | F | Israel | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1058 | 4 | Barcelona 1 | 529 | M | Barcelona | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1059 | 4 | Sweden 1 | 530 | F | Sweden | Barcelona | 1 | 271 | NA | 0 | 0 | 0 | NA | NA | NA |
1060 | 4 | Barcelona 1 | 530 | M | Barcelona | Sweden | 1 | 271 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1063 | 4 | Brownsville 1 | 532 | F | Brownsville | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1064 | 4 | Brownsville 1 | 532 | M | Brownsville | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1065 | 4 | Dahomey 1 | 533 | F | Dahomey | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1066 | 4 | Brownsville 1 | 533 | M | Brownsville | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1067 | 4 | Israel 1 | 534 | F | Israel | Brownsville | 1 | 244 | NA | 0 | 0 | 0 | NA | NA | NA |
1068 | 4 | Brownsville 1 | 534 | M | Brownsville | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1069 | 4 | Sweden 1 | 535 | F | Sweden | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1070 | 4 | Brownsville 1 | 535 | M | Brownsville | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1071 | 4 | Barcelona 1 | 536 | F | Barcelona | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1072 | 4 | Dahomey 1 | 536 | M | Dahomey | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1073 | 4 | Brownsville 1 | 537 | F | Brownsville | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1074 | 4 | Dahomey 1 | 537 | M | Dahomey | Brownsville | 1 | 244 | 1.130 | NA | NA | NA | NA | NA | 0.9756098 |
1075 | 4 | Dahomey 1 | 538 | F | Dahomey | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1076 | 4 | Dahomey 1 | 538 | M | Dahomey | Dahomey | 1 | 240 | 1.055 | NA | NA | NA | 22 | 18 | 0.5500000 |
1077 | 4 | Israel 1 | 539 | F | Israel | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1078 | 4 | Dahomey 1 | 539 | M | Dahomey | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1079 | 4 | Sweden 1 | 540 | F | Sweden | Dahomey | 1 | NA | 0.870 | 21 | 14 | 35 | NA | NA | NA |
1080 | 4 | Dahomey 1 | 540 | M | Dahomey | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1081 | 4 | Barcelona 1 | 541 | F | Barcelona | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1082 | 4 | Israel 1 | 541 | M | Israel | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1083 | 4 | Brownsville 1 | 542 | F | Brownsville | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1084 | 4 | Israel 1 | 542 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1085 | 4 | Dahomey 1 | 543 | F | Dahomey | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1086 | 4 | Israel 1 | 543 | M | Israel | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1087 | 4 | Israel 1 | 544 | F | Israel | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1088 | 4 | Israel 1 | 544 | M | Israel | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1089 | 4 | Sweden 1 | 545 | F | Sweden | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1090 | 4 | Israel 1 | 545 | M | Israel | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1093 | 4 | Brownsville 1 | 547 | F | Brownsville | Sweden | 1 | 253 | 0.982 | 20 | 22 | 42 | NA | NA | NA |
1094 | 4 | Sweden 1 | 547 | M | Sweden | Brownsville | 1 | 263 | 0.897 | NA | NA | NA | 0 | 43 | 0.0000000 |
1095 | 4 | Dahomey 1 | 548 | F | Dahomey | Sweden | 1 | 263 | 1.042 | 23 | 31 | 54 | NA | NA | NA |
1096 | 4 | Sweden 1 | 548 | M | Sweden | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1097 | 4 | Israel 1 | 549 | F | Israel | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1098 | 4 | Sweden 1 | 549 | M | Sweden | Israel | 1 | 264 | 0.890 | NA | NA | NA | NA | NA | 0.0000000 |
1099 | 4 | Sweden 1 | 550 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1100 | 4 | Sweden 1 | 550 | M | Sweden | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1101 | 4 | Barcelona 1 | 551 | F | Barcelona | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1102 | 4 | Barcelona 1 | 551 | M | Barcelona | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1103 | 4 | Brownsville 1 | 552 | F | Brownsville | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1104 | 4 | Barcelona 1 | 552 | M | Barcelona | Brownsville | 1 | 247 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1105 | 4 | Dahomey 1 | 553 | F | Dahomey | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1106 | 4 | Barcelona 1 | 553 | M | Barcelona | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1107 | 4 | Israel 1 | 554 | F | Israel | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1108 | 4 | Barcelona 1 | 554 | M | Barcelona | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1109 | 4 | Sweden 1 | 555 | F | Sweden | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1110 | 4 | Barcelona 1 | 555 | M | Barcelona | Sweden | 1 | 264 | 0.882 | NA | NA | NA | 0 | 32 | 0.0000000 |
1111 | 4 | Barcelona 1 | 556 | F | Barcelona | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1112 | 4 | Brownsville 1 | 556 | M | Brownsville | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1113 | 4 | Brownsville 1 | 557 | F | Brownsville | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1114 | 4 | Brownsville 1 | 557 | M | Brownsville | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1115 | 4 | Dahomey 1 | 558 | F | Dahomey | Brownsville | 1 | 244 | NA | 0 | 0 | 0 | NA | NA | NA |
1116 | 4 | Brownsville 1 | 558 | M | Brownsville | Dahomey | 1 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1117 | 4 | Israel 1 | 559 | F | Israel | Brownsville | 1 | NA | 1.125 | 32 | 25 | 57 | NA | NA | NA |
1118 | 4 | Brownsville 1 | 559 | M | Brownsville | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1119 | 4 | Sweden 1 | 560 | F | Sweden | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1120 | 4 | Brownsville 1 | 560 | M | Brownsville | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1121 | 4 | Barcelona 1 | 561 | F | Barcelona | Dahomey | 1 | 263 | 0.955 | 21 | 26 | 47 | NA | NA | NA |
1122 | 4 | Dahomey 1 | 561 | M | Dahomey | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1123 | 4 | Brownsville 1 | 562 | F | Brownsville | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1124 | 4 | Dahomey 1 | 562 | M | Dahomey | Brownsville | 1 | 244 | NA | NA | NA | NA | 0 | 30 | 0.0000000 |
1125 | 4 | Dahomey 1 | 563 | F | Dahomey | Dahomey | 1 | 253 | 1.062 | 19 | 24 | 43 | NA | NA | NA |
1126 | 4 | Dahomey 1 | 563 | M | Dahomey | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1127 | 4 | Israel 1 | 564 | F | Israel | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1128 | 4 | Dahomey 1 | 564 | M | Dahomey | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1129 | 4 | Sweden 1 | 565 | F | Sweden | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1130 | 4 | Dahomey 1 | 565 | M | Dahomey | Sweden | 1 | 290 | NA | NA | NA | NA | 0 | 41 | 0.0000000 |
1131 | 4 | Barcelona 1 | 566 | F | Barcelona | Israel | 1 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1132 | 4 | Israel 1 | 566 | M | Israel | Barcelona | 1 | NA | 0.903 | NA | NA | NA | 0 | 80 | 0.0000000 |
1133 | 4 | Brownsville 1 | 567 | F | Brownsville | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1134 | 4 | Israel 1 | 567 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1135 | 4 | Dahomey 1 | 568 | F | Dahomey | Israel | 1 | 245 | 1.121 | 44 | 35 | 79 | NA | NA | NA |
1136 | 4 | Israel 1 | 568 | M | Israel | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1137 | 4 | Israel 1 | 569 | F | Israel | Israel | 1 | 268 | 0.978 | 0 | 0 | 0 | NA | NA | NA |
1138 | 4 | Israel 1 | 569 | M | Israel | Israel | 1 | 265 | 0.880 | NA | NA | NA | 0 | 84 | 0.0000000 |
1139 | 4 | Sweden 1 | 570 | F | Sweden | Israel | 1 | 264 | 0.975 | 14 | 21 | 35 | NA | NA | NA |
1140 | 4 | Israel 1 | 570 | M | Israel | Sweden | 1 | 252 | 0.933 | NA | NA | NA | 21 | 61 | 0.2560976 |
1141 | 4 | Barcelona 1 | 571 | F | Barcelona | Sweden | 1 | 267 | 1.044 | 35 | 34 | 69 | NA | NA | NA |
1142 | 4 | Sweden 1 | 571 | M | Sweden | Barcelona | 1 | 247 | 1.002 | NA | NA | NA | 125 | 0 | 1.0000000 |
1143 | 4 | Brownsville 1 | 572 | F | Brownsville | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1144 | 4 | Sweden 1 | 572 | M | Sweden | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1145 | 4 | Dahomey 1 | 573 | F | Dahomey | Sweden | 1 | 249 | 0.895 | 0 | 0 | 0 | NA | NA | NA |
1146 | 4 | Sweden 1 | 573 | M | Sweden | Dahomey | 1 | 247 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1147 | 4 | Israel 1 | 574 | F | Israel | Sweden | 1 | 248 | NA | 0 | 0 | 0 | NA | NA | NA |
1148 | 4 | Sweden 1 | 574 | M | Sweden | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1149 | 4 | Sweden 1 | 575 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1150 | 4 | Sweden 1 | 575 | M | Sweden | Sweden | 1 | 250 | 0.913 | NA | NA | NA | 0 | 0 | 0.0000000 |
1151 | 4 | Barcelona 1 | 576 | F | Barcelona | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1152 | 4 | Barcelona 1 | 576 | M | Barcelona | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1153 | 4 | Brownsville 1 | 577 | F | Brownsville | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1154 | 4 | Barcelona 1 | 577 | M | Barcelona | Brownsville | 1 | NA | 1.159 | NA | NA | NA | 0 | 58 | 0.0000000 |
1155 | 4 | Dahomey 1 | 578 | F | Dahomey | Barcelona | 1 | 270 | NA | 0 | 0 | 0 | NA | NA | NA |
1156 | 4 | Barcelona 1 | 578 | M | Barcelona | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1157 | 4 | Israel 1 | 579 | F | Israel | Barcelona | 1 | NA | 1.042 | 21 | 14 | 35 | NA | NA | NA |
1158 | 4 | Barcelona 1 | 579 | M | Barcelona | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1159 | 4 | Sweden 1 | 580 | F | Sweden | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1160 | 4 | Barcelona 1 | 580 | M | Barcelona | Sweden | 1 | 299 | NA | NA | NA | NA | NA | NA | NA |
1161 | 4 | Barcelona 1 | 581 | F | Barcelona | Brownsville | 1 | NA | NA | 20 | 21 | 41 | NA | NA | NA |
1162 | 4 | Brownsville 1 | 581 | M | Brownsville | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1163 | 4 | Brownsville 1 | 582 | F | Brownsville | Brownsville | 1 | NA | 1.014 | 19 | 7 | 26 | NA | NA | NA |
1164 | 4 | Brownsville 1 | 582 | M | Brownsville | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1171 | 4 | Barcelona 1 | 586 | F | Barcelona | Dahomey | 1 | 245 | 1.084 | 26 | 33 | 59 | NA | NA | NA |
1172 | 4 | Dahomey 1 | 586 | M | Dahomey | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1173 | 4 | Brownsville 1 | 587 | F | Brownsville | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1174 | 4 | Dahomey 1 | 587 | M | Dahomey | Brownsville | 1 | NA | 0.995 | NA | NA | NA | 23 | 1 | 0.9583333 |
1175 | 4 | Dahomey 1 | 588 | F | Dahomey | Dahomey | 1 | NA | 1.130 | 26 | 25 | 51 | NA | NA | NA |
1176 | 4 | Dahomey 1 | 588 | M | Dahomey | Dahomey | 1 | 264 | NA | NA | NA | NA | 0 | 40 | 0.0000000 |
1177 | 4 | Israel 1 | 589 | F | Israel | Dahomey | 1 | 250 | 1.053 | 22 | 24 | 46 | NA | NA | NA |
1178 | 4 | Dahomey 1 | 589 | M | Dahomey | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1179 | 4 | Sweden 1 | 590 | F | Sweden | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1180 | 4 | Dahomey 1 | 590 | M | Dahomey | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1181 | 4 | Barcelona 1 | 591 | F | Barcelona | Israel | 1 | 296 | 0.909 | 0 | 0 | 0 | NA | NA | NA |
1182 | 4 | Israel 1 | 591 | M | Israel | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1183 | 4 | Brownsville 1 | 592 | F | Brownsville | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1184 | 4 | Israel 1 | 592 | M | Israel | Brownsville | 1 | 249 | 1.007 | NA | NA | NA | 0 | 64 | 0.0000000 |
1185 | 4 | Dahomey 1 | 593 | F | Dahomey | Israel | 1 | 276 | 0.992 | 17 | 17 | 34 | NA | NA | NA |
1186 | 4 | Israel 1 | 593 | M | Israel | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1187 | 4 | Israel 1 | 594 | F | Israel | Israel | 1 | 252 | 0.975 | 20 | 24 | 44 | NA | NA | NA |
1188 | 4 | Israel 1 | 594 | M | Israel | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1189 | 4 | Sweden 1 | 595 | F | Sweden | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1190 | 4 | Israel 1 | 595 | M | Israel | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1191 | 4 | Barcelona 1 | 596 | F | Barcelona | Sweden | 1 | 263 | NA | 0 | 0 | 0 | NA | NA | NA |
1192 | 4 | Sweden 1 | 596 | M | Sweden | Barcelona | 1 | 263 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1193 | 4 | Brownsville 1 | 597 | F | Brownsville | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1194 | 4 | Sweden 1 | 597 | M | Sweden | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1195 | 4 | Dahomey 1 | 598 | F | Dahomey | Sweden | 1 | 251 | 1.076 | 22 | 25 | 47 | NA | NA | NA |
1196 | 4 | Sweden 1 | 598 | M | Sweden | Dahomey | 1 | 268 | 0.878 | NA | NA | NA | 0 | 68 | 0.0000000 |
1197 | 4 | Israel 1 | 599 | F | Israel | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1198 | 4 | Sweden 1 | 599 | M | Sweden | Israel | 1 | 266 | 0.922 | NA | NA | NA | 0 | 18 | 0.0000000 |
1199 | 4 | Sweden 1 | 600 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1200 | 4 | Sweden 1 | 600 | M | Sweden | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1201 | 4 | Barcelona 2 | 601 | F | Barcelona | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1202 | 4 | Barcelona 2 | 601 | M | Barcelona | Barcelona | 1 | 251 | 0.918 | NA | NA | NA | 75 | 42 | 0.6410256 |
1203 | 4 | Brownsville 2 | 602 | F | Brownsville | Barcelona | 1 | 264 | 1.016 | 25 | 18 | 43 | NA | NA | NA |
1204 | 4 | Barcelona 2 | 602 | M | Barcelona | Brownsville | 1 | 252 | NA | NA | NA | NA | 0 | 61 | 0.0000000 |
1205 | 4 | Dahomey 2 | 603 | F | Dahomey | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1206 | 4 | Barcelona 2 | 603 | M | Barcelona | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1207 | 4 | Israel 2 | 604 | F | Israel | Barcelona | 1 | 247 | NA | 13 | 13 | 26 | NA | NA | NA |
1208 | 4 | Barcelona 2 | 604 | M | Barcelona | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1209 | 4 | Sweden 2 | 605 | F | Sweden | Barcelona | 1 | NA | 0.904 | 16 | 16 | 32 | NA | NA | NA |
1210 | 4 | Barcelona 2 | 605 | M | Barcelona | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1211 | 4 | Barcelona 2 | 606 | F | Barcelona | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1212 | 4 | Brownsville 2 | 606 | M | Brownsville | Barcelona | 1 | NA | 0.900 | NA | NA | NA | 0 | 82 | 0.0000000 |
1213 | 4 | Brownsville 2 | 607 | F | Brownsville | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1214 | 4 | Brownsville 2 | 607 | M | Brownsville | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1215 | 4 | Dahomey 2 | 608 | F | Dahomey | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1216 | 4 | Brownsville 2 | 608 | M | Brownsville | Dahomey | 1 | 269 | 0.896 | NA | NA | NA | 0 | 84 | 0.0000000 |
1217 | 4 | Israel 2 | 609 | F | Israel | Brownsville | 1 | 274 | NA | 27 | 23 | 50 | NA | NA | NA |
1218 | 4 | Brownsville 2 | 609 | M | Brownsville | Israel | 1 | 265 | 0.931 | NA | NA | NA | 0 | 61 | 0.0000000 |
1219 | 4 | Sweden 2 | 610 | F | Sweden | Brownsville | 1 | NA | 1.073 | 0 | 0 | 0 | NA | NA | NA |
1220 | 4 | Brownsville 2 | 610 | M | Brownsville | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1221 | 4 | Barcelona 2 | 611 | F | Barcelona | Dahomey | 1 | 252 | 1.014 | 0 | 0 | 0 | NA | NA | NA |
1222 | 4 | Dahomey 2 | 611 | M | Dahomey | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1223 | 4 | Brownsville 2 | 612 | F | Brownsville | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1224 | 4 | Dahomey 2 | 612 | M | Dahomey | Brownsville | 1 | 246 | 1.004 | NA | NA | NA | 0 | 89 | 0.0000000 |
1225 | 4 | Dahomey 2 | 613 | F | Dahomey | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1226 | 4 | Dahomey 2 | 613 | M | Dahomey | Dahomey | 1 | 244 | 1.037 | NA | NA | NA | 104 | 31 | 0.7703704 |
1227 | 4 | Israel 2 | 614 | F | Israel | Dahomey | 1 | 246 | 1.060 | 23 | 15 | 38 | NA | NA | NA |
1228 | 4 | Dahomey 2 | 614 | M | Dahomey | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1229 | 4 | Sweden 2 | 615 | F | Sweden | Dahomey | 1 | 269 | 1.042 | 29 | 29 | 58 | NA | NA | NA |
1230 | 4 | Dahomey 2 | 615 | M | Dahomey | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1231 | 4 | Barcelona 2 | 616 | F | Barcelona | Israel | 1 | 247 | NA | 0 | 0 | 0 | NA | NA | NA |
1232 | 4 | Israel 2 | 616 | M | Israel | Barcelona | 1 | 244 | 1.007 | NA | NA | NA | 0 | 68 | 0.0000000 |
1233 | 4 | Brownsville 2 | 617 | F | Brownsville | Israel | 1 | 245 | 1.045 | 20 | 25 | 45 | NA | NA | NA |
1234 | 4 | Israel 2 | 617 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1235 | 4 | Dahomey 2 | 618 | F | Dahomey | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1236 | 4 | Israel 2 | 618 | M | Israel | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1237 | 4 | Israel 2 | 619 | F | Israel | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1238 | 4 | Israel 2 | 619 | M | Israel | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1239 | 4 | Sweden 2 | 620 | F | Sweden | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1240 | 4 | Israel 2 | 620 | M | Israel | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1243 | 4 | Brownsville 2 | 622 | F | Brownsville | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1244 | 4 | Sweden 2 | 622 | M | Sweden | Brownsville | 1 | 245 | 1.080 | NA | NA | NA | 149 | 0 | 1.0000000 |
1245 | 4 | Dahomey 2 | 623 | F | Dahomey | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1246 | 4 | Sweden 2 | 623 | M | Sweden | Dahomey | 1 | 244 | 1.021 | NA | NA | NA | 125 | 0 | 1.0000000 |
1247 | 4 | Israel 2 | 624 | F | Israel | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1248 | 4 | Sweden 2 | 624 | M | Sweden | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1249 | 4 | Sweden 2 | 625 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1250 | 4 | Sweden 2 | 625 | M | Sweden | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1251 | 4 | Barcelona 2 | 626 | F | Barcelona | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1252 | 4 | Barcelona 2 | 626 | M | Barcelona | Barcelona | 1 | 247 | 1.073 | NA | NA | NA | 161 | 1 | 0.9938272 |
1253 | 4 | Brownsville 2 | 627 | F | Brownsville | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1254 | 4 | Barcelona 2 | 627 | M | Barcelona | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1255 | 4 | Dahomey 2 | 628 | F | Dahomey | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1256 | 4 | Barcelona 2 | 628 | M | Barcelona | Dahomey | 1 | 264 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1257 | 4 | Israel 2 | 629 | F | Israel | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1258 | 4 | Barcelona 2 | 629 | M | Barcelona | Israel | 1 | 248 | 1.031 | NA | NA | NA | 0 | 30 | 0.0000000 |
1259 | 4 | Sweden 2 | 630 | F | Sweden | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1260 | 4 | Barcelona 2 | 630 | M | Barcelona | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1261 | 4 | Barcelona 2 | 631 | F | Barcelona | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1262 | 4 | Brownsville 2 | 631 | M | Brownsville | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1263 | 4 | Brownsville 2 | 632 | F | Brownsville | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1264 | 4 | Brownsville 2 | 632 | M | Brownsville | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1265 | 4 | Dahomey 2 | 633 | F | Dahomey | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1266 | 4 | Brownsville 2 | 633 | M | Brownsville | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1267 | 4 | Israel 2 | 634 | F | Israel | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1268 | 4 | Brownsville 2 | 634 | M | Brownsville | Israel | 1 | 248 | NA | NA | NA | NA | 0 | 5 | 0.0000000 |
1269 | 4 | Sweden 2 | 635 | F | Sweden | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1270 | 4 | Brownsville 2 | 635 | M | Brownsville | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1271 | 4 | Barcelona 2 | 636 | F | Barcelona | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1272 | 4 | Dahomey 2 | 636 | M | Dahomey | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1273 | 4 | Brownsville 2 | 637 | F | Brownsville | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1274 | 4 | Dahomey 2 | 637 | M | Dahomey | Brownsville | 1 | NA | 0.878 | NA | NA | NA | 0 | 83 | 0.0000000 |
1275 | 4 | Dahomey 2 | 638 | F | Dahomey | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1276 | 4 | Dahomey 2 | 638 | M | Dahomey | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1277 | 4 | Israel 2 | 639 | F | Israel | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1278 | 4 | Dahomey 2 | 639 | M | Dahomey | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1279 | 4 | Sweden 2 | 640 | F | Sweden | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1280 | 4 | Dahomey 2 | 640 | M | Dahomey | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1281 | 4 | Barcelona 2 | 641 | F | Barcelona | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1282 | 4 | Israel 2 | 641 | M | Israel | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1283 | 4 | Brownsville 2 | 642 | F | Brownsville | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1284 | 4 | Israel 2 | 642 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1285 | 4 | Dahomey 2 | 643 | F | Dahomey | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1286 | 4 | Israel 2 | 643 | M | Israel | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1287 | 4 | Israel 2 | 644 | F | Israel | Israel | 1 | NA | 1.045 | 34 | 24 | 58 | NA | NA | NA |
1288 | 4 | Israel 2 | 644 | M | Israel | Israel | 1 | 246 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1289 | 4 | Sweden 2 | 645 | F | Sweden | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1290 | 4 | Israel 2 | 645 | M | Israel | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1291 | 4 | Barcelona 2 | 646 | F | Barcelona | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1292 | 4 | Sweden 2 | 646 | M | Sweden | Barcelona | 1 | 266 | 1.047 | NA | NA | NA | 75 | 7 | 0.9146341 |
1295 | 4 | Dahomey 2 | 648 | F | Dahomey | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1296 | 4 | Sweden 2 | 648 | M | Sweden | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1297 | 4 | Israel 2 | 649 | F | Israel | Sweden | 1 | 249 | 1.024 | 23 | 25 | 48 | NA | NA | NA |
1298 | 4 | Sweden 2 | 649 | M | Sweden | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1299 | 4 | Sweden 2 | 650 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1300 | 4 | Sweden 2 | 650 | M | Sweden | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1301 | 4 | Barcelona 2 | 651 | F | Barcelona | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1302 | 4 | Barcelona 2 | 651 | M | Barcelona | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1303 | 4 | Brownsville 2 | 652 | F | Brownsville | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1304 | 4 | Barcelona 2 | 652 | M | Barcelona | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1305 | 4 | Dahomey 2 | 653 | F | Dahomey | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1306 | 4 | Barcelona 2 | 653 | M | Barcelona | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1307 | 4 | Israel 2 | 654 | F | Israel | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1308 | 4 | Barcelona 2 | 654 | M | Barcelona | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1309 | 4 | Sweden 2 | 655 | F | Sweden | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1310 | 4 | Barcelona 2 | 655 | M | Barcelona | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1311 | 4 | Barcelona 2 | 656 | F | Barcelona | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1312 | 4 | Brownsville 2 | 656 | M | Brownsville | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1313 | 4 | Brownsville 2 | 657 | F | Brownsville | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1314 | 4 | Brownsville 2 | 657 | M | Brownsville | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1315 | 4 | Dahomey 2 | 658 | F | Dahomey | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1316 | 4 | Brownsville 2 | 658 | M | Brownsville | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1317 | 4 | Israel 2 | 659 | F | Israel | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1318 | 4 | Brownsville 2 | 659 | M | Brownsville | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1319 | 4 | Sweden 2 | 660 | F | Sweden | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1320 | 4 | Brownsville 2 | 660 | M | Brownsville | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1321 | 4 | Barcelona 2 | 661 | F | Barcelona | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1322 | 4 | Dahomey 2 | 661 | M | Dahomey | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1323 | 4 | Brownsville 2 | 662 | F | Brownsville | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1324 | 4 | Dahomey 2 | 662 | M | Dahomey | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1325 | 4 | Dahomey 2 | 663 | F | Dahomey | Dahomey | 1 | 263 | 0.967 | 20 | 21 | 41 | NA | NA | NA |
1326 | 4 | Dahomey 2 | 663 | M | Dahomey | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1327 | 4 | Israel 2 | 664 | F | Israel | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1328 | 4 | Dahomey 2 | 664 | M | Dahomey | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1329 | 4 | Sweden 2 | 665 | F | Sweden | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1330 | 4 | Dahomey 2 | 665 | M | Dahomey | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1331 | 4 | Barcelona 2 | 666 | F | Barcelona | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1332 | 4 | Israel 2 | 666 | M | Israel | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1333 | 4 | Brownsville 2 | 667 | F | Brownsville | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1334 | 4 | Israel 2 | 667 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1335 | 4 | Dahomey 2 | 668 | F | Dahomey | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1336 | 4 | Israel 2 | 668 | M | Israel | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1337 | 4 | Israel 2 | 669 | F | Israel | Israel | 1 | 250 | 1.038 | 24 | 16 | 40 | NA | NA | NA |
1338 | 4 | Israel 2 | 669 | M | Israel | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1339 | 4 | Sweden 2 | 670 | F | Sweden | Israel | 1 | 268 | NA | 0 | 0 | 0 | NA | NA | NA |
1340 | 4 | Israel 2 | 670 | M | Israel | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1341 | 4 | Barcelona 2 | 671 | F | Barcelona | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1342 | 4 | Sweden 2 | 671 | M | Sweden | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1343 | 4 | Brownsville 2 | 672 | F | Brownsville | Sweden | 1 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1344 | 4 | Sweden 2 | 672 | M | Sweden | Brownsville | 1 | NA | NA | NA | NA | NA | NA | NA | NA |
1345 | 4 | Dahomey 2 | 673 | F | Dahomey | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1346 | 4 | Sweden 2 | 673 | M | Sweden | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1347 | 4 | Israel 2 | 674 | F | Israel | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1348 | 4 | Sweden 2 | 674 | M | Sweden | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1349 | 4 | Sweden 2 | 675 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1350 | 4 | Sweden 2 | 675 | M | Sweden | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1351 | 4 | Barcelona 2 | 676 | F | Barcelona | Barcelona | 1 | 250 | NA | 0 | 0 | 0 | NA | NA | NA |
1352 | 4 | Barcelona 2 | 676 | M | Barcelona | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1353 | 4 | Brownsville 2 | 677 | F | Brownsville | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1354 | 4 | Barcelona 2 | 677 | M | Barcelona | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1355 | 4 | Dahomey 2 | 678 | F | Dahomey | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1356 | 4 | Barcelona 2 | 678 | M | Barcelona | Dahomey | 1 | 250 | 1.077 | NA | NA | NA | 103 | 0 | 1.0000000 |
1357 | 4 | Israel 2 | 679 | F | Israel | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1358 | 4 | Barcelona 2 | 679 | M | Barcelona | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1359 | 4 | Sweden 2 | 680 | F | Sweden | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1360 | 4 | Barcelona 2 | 680 | M | Barcelona | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1361 | 4 | Barcelona 2 | 681 | F | Barcelona | Brownsville | 1 | 264 | 0.963 | 11 | 6 | 17 | NA | NA | NA |
1362 | 4 | Brownsville 2 | 681 | M | Brownsville | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1363 | 4 | Brownsville 2 | 682 | F | Brownsville | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1364 | 4 | Brownsville 2 | 682 | M | Brownsville | Brownsville | 1 | 265 | 0.841 | NA | NA | NA | 0 | 0 | 0.0000000 |
1365 | 4 | Dahomey 2 | 683 | F | Dahomey | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1366 | 4 | Brownsville 2 | 683 | M | Brownsville | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1367 | 4 | Israel 2 | 684 | F | Israel | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1368 | 4 | Brownsville 2 | 684 | M | Brownsville | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1369 | 4 | Sweden 2 | 685 | F | Sweden | Brownsville | 1 | NA | 1.005 | 4 | 3 | 7 | NA | NA | NA |
1370 | 4 | Brownsville 2 | 685 | M | Brownsville | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1371 | 4 | Barcelona 2 | 686 | F | Barcelona | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1372 | 4 | Dahomey 2 | 686 | M | Dahomey | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1373 | 4 | Brownsville 2 | 687 | F | Brownsville | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1374 | 4 | Dahomey 2 | 687 | M | Dahomey | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1375 | 4 | Dahomey 2 | 688 | F | Dahomey | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1376 | 4 | Dahomey 2 | 688 | M | Dahomey | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1377 | 4 | Israel 2 | 689 | F | Israel | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1378 | 4 | Dahomey 2 | 689 | M | Dahomey | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1381 | 4 | Barcelona 2 | 691 | F | Barcelona | Israel | 1 | 275 | NA | 0 | 0 | 0 | NA | NA | NA |
1382 | 4 | Israel 2 | 691 | M | Israel | Barcelona | 1 | 251 | 1.061 | NA | NA | NA | 33 | 0 | 1.0000000 |
1383 | 4 | Brownsville 2 | 692 | F | Brownsville | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1384 | 4 | Israel 2 | 692 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1385 | 4 | Dahomey 2 | 693 | F | Dahomey | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1386 | 4 | Israel 2 | 693 | M | Israel | Dahomey | 1 | NA | 0.957 | NA | NA | NA | 146 | 1 | 0.9931973 |
1387 | 4 | Israel 2 | 694 | F | Israel | Israel | 1 | 248 | NA | 0 | 0 | 0 | NA | NA | NA |
1388 | 4 | Israel 2 | 694 | M | Israel | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1389 | 4 | Sweden 2 | 695 | F | Sweden | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1390 | 4 | Israel 2 | 695 | M | Israel | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1391 | 4 | Barcelona 2 | 696 | F | Barcelona | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1392 | 4 | Sweden 2 | 696 | M | Sweden | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1393 | 4 | Brownsville 2 | 697 | F | Brownsville | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1394 | 4 | Sweden 2 | 697 | M | Sweden | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1395 | 4 | Dahomey 2 | 698 | F | Dahomey | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1396 | 4 | Sweden 2 | 698 | M | Sweden | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1397 | 4 | Israel 2 | 699 | F | Israel | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1398 | 4 | Sweden 2 | 699 | M | Sweden | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1399 | 4 | Sweden 2 | 700 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1400 | 4 | Sweden 2 | 700 | M | Sweden | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1401 | 5 | Barcelona 1 | 701 | F | Barcelona | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1402 | 5 | Barcelona 1 | 701 | M | Barcelona | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1403 | 5 | Brownsville 1 | 702 | F | Brownsville | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1404 | 5 | Barcelona 1 | 702 | M | Barcelona | Brownsville | 1 | 286 | 0.751 | NA | NA | NA | 0 | 46 | 0.0000000 |
1405 | 5 | Dahomey 1 | 703 | F | Dahomey | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1406 | 5 | Barcelona 1 | 703 | M | Barcelona | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1407 | 5 | Israel 1 | 704 | F | Israel | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1408 | 5 | Barcelona 1 | 704 | M | Barcelona | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1409 | 5 | Sweden 1 | 705 | F | Sweden | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1410 | 5 | Barcelona 1 | 705 | M | Barcelona | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1411 | 5 | Barcelona 1 | 706 | F | Barcelona | Brownsville | 1 | 267 | NA | NA | NA | NA | NA | NA | NA |
1412 | 5 | Brownsville 1 | 706 | M | Brownsville | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1413 | 5 | Brownsville 1 | 707 | F | Brownsville | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1414 | 5 | Brownsville 1 | 707 | M | Brownsville | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1415 | 5 | Dahomey 1 | 708 | F | Dahomey | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1416 | 5 | Brownsville 1 | 708 | M | Brownsville | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1417 | 5 | Israel 1 | 709 | F | Israel | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1418 | 5 | Brownsville 1 | 709 | M | Brownsville | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1419 | 5 | Sweden 1 | 710 | F | Sweden | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1420 | 5 | Brownsville 1 | 710 | M | Brownsville | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1421 | 5 | Barcelona 1 | 711 | F | Barcelona | Dahomey | 1 | 280 | NA | 0 | 0 | 0 | NA | NA | NA |
1422 | 5 | Dahomey 1 | 711 | M | Dahomey | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1423 | 5 | Brownsville 1 | 712 | F | Brownsville | Dahomey | 1 | 284 | NA | 1 | 0 | 1 | NA | NA | NA |
1424 | 5 | Dahomey 1 | 712 | M | Dahomey | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1425 | 5 | Dahomey 1 | 713 | F | Dahomey | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1426 | 5 | Dahomey 1 | 713 | M | Dahomey | Dahomey | 1 | 237 | 0.963 | NA | NA | NA | 0 | 14 | 0.0000000 |
1427 | 5 | Israel 1 | 714 | F | Israel | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1428 | 5 | Dahomey 1 | 714 | M | Dahomey | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1429 | 5 | Sweden 1 | 715 | F | Sweden | Dahomey | 1 | 268 | 1.071 | 25 | 20 | 45 | NA | NA | NA |
1430 | 5 | Dahomey 1 | 715 | M | Dahomey | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1431 | 5 | Barcelona 1 | 716 | F | Barcelona | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1432 | 5 | Israel 1 | 716 | M | Israel | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1433 | 5 | Brownsville 1 | 717 | F | Brownsville | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1434 | 5 | Israel 1 | 717 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1435 | 5 | Dahomey 1 | 718 | F | Dahomey | Israel | 1 | 257 | 1.016 | 24 | 30 | 54 | NA | NA | NA |
1436 | 5 | Israel 1 | 718 | M | Israel | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1437 | 5 | Israel 1 | 719 | F | Israel | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1438 | 5 | Israel 1 | 719 | M | Israel | Israel | 1 | 278 | 0.862 | NA | NA | NA | 0 | 47 | 0.0000000 |
1439 | 5 | Sweden 1 | 720 | F | Sweden | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1440 | 5 | Israel 1 | 720 | M | Israel | Sweden | 1 | 263 | 1.011 | NA | NA | NA | 0 | 27 | 0.0000000 |
1441 | 5 | Barcelona 1 | 721 | F | Barcelona | Sweden | 1 | 281 | 0.901 | 5 | 5 | 10 | NA | NA | NA |
1442 | 5 | Sweden 1 | 721 | M | Sweden | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1443 | 5 | Brownsville 1 | 722 | F | Brownsville | Sweden | 1 | 283 | 0.918 | 17 | 16 | 33 | NA | NA | NA |
1444 | 5 | Sweden 1 | 722 | M | Sweden | Brownsville | 1 | 278 | 0.890 | NA | NA | NA | 0 | 27 | 0.0000000 |
1445 | 5 | Dahomey 1 | 723 | F | Dahomey | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1446 | 5 | Sweden 1 | 723 | M | Sweden | Dahomey | 1 | 270 | 1.036 | NA | NA | NA | 23 | 9 | 0.7187500 |
1447 | 5 | Israel 1 | 724 | F | Israel | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1448 | 5 | Sweden 1 | 724 | M | Sweden | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1449 | 5 | Sweden 1 | 725 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1450 | 5 | Sweden 1 | 725 | M | Sweden | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1451 | 5 | Barcelona 1 | 726 | F | Barcelona | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1452 | 5 | Barcelona 1 | 726 | M | Barcelona | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1453 | 5 | Brownsville 1 | 727 | F | Brownsville | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1454 | 5 | Barcelona 1 | 727 | M | Barcelona | Brownsville | 1 | 258 | 1.038 | NA | NA | NA | 0 | 65 | 0.0000000 |
1455 | 5 | Dahomey 1 | 728 | F | Dahomey | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1456 | 5 | Barcelona 1 | 728 | M | Barcelona | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1457 | 5 | Israel 1 | 729 | F | Israel | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1458 | 5 | Barcelona 1 | 729 | M | Barcelona | Israel | 1 | 264 | 0.998 | NA | NA | NA | 0 | 18 | 0.0000000 |
1459 | 5 | Sweden 1 | 730 | F | Sweden | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1460 | 5 | Barcelona 1 | 730 | M | Barcelona | Sweden | 1 | 267 | NA | NA | NA | NA | 0 | 20 | 0.0000000 |
1463 | 5 | Brownsville 1 | 732 | F | Brownsville | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1464 | 5 | Brownsville 1 | 732 | M | Brownsville | Brownsville | 1 | 279 | 0.907 | NA | NA | NA | 0 | 56 | 0.0000000 |
1465 | 5 | Dahomey 1 | 733 | F | Dahomey | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1466 | 5 | Brownsville 1 | 733 | M | Brownsville | Dahomey | 1 | 272 | 0.944 | NA | NA | NA | 0 | 12 | 0.0000000 |
1467 | 5 | Israel 1 | 734 | F | Israel | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1468 | 5 | Brownsville 1 | 734 | M | Brownsville | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1469 | 5 | Sweden 1 | 735 | F | Sweden | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1470 | 5 | Brownsville 1 | 735 | M | Brownsville | Sweden | 1 | 243 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1471 | 5 | Barcelona 1 | 736 | F | Barcelona | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1472 | 5 | Dahomey 1 | 736 | M | Dahomey | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1473 | 5 | Brownsville 1 | 737 | F | Brownsville | Dahomey | 1 | 280 | NA | 1 | 1 | 2 | NA | NA | NA |
1474 | 5 | Dahomey 1 | 737 | M | Dahomey | Brownsville | 1 | 287 | NA | NA | NA | NA | 0 | 86 | 0.0000000 |
1475 | 5 | Dahomey 1 | 738 | F | Dahomey | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1476 | 5 | Dahomey 1 | 738 | M | Dahomey | Dahomey | 1 | 249 | 1.007 | NA | NA | NA | 0 | 15 | 0.0000000 |
1477 | 5 | Israel 1 | 739 | F | Israel | Dahomey | 1 | 251 | 1.113 | 34 | 30 | 64 | NA | NA | NA |
1478 | 5 | Dahomey 1 | 739 | M | Dahomey | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1479 | 5 | Sweden 1 | 740 | F | Sweden | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1480 | 5 | Dahomey 1 | 740 | M | Dahomey | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1481 | 5 | Barcelona 1 | 741 | F | Barcelona | Israel | 1 | 264 | 0.979 | 16 | 18 | 34 | NA | NA | NA |
1482 | 5 | Israel 1 | 741 | M | Israel | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1483 | 5 | Brownsville 1 | 742 | F | Brownsville | Israel | 1 | 279 | NA | 0 | 0 | 0 | NA | NA | NA |
1484 | 5 | Israel 1 | 742 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1487 | 5 | Israel 1 | 744 | F | Israel | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1488 | 5 | Israel 1 | 744 | M | Israel | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1489 | 5 | Sweden 1 | 745 | F | Sweden | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1490 | 5 | Israel 1 | 745 | M | Israel | Sweden | 1 | 245 | 1.140 | NA | NA | NA | 120 | 8 | 0.9375000 |
1491 | 5 | Barcelona 1 | 746 | F | Barcelona | Sweden | 1 | 267 | 1.045 | 17 | 21 | 38 | NA | NA | NA |
1492 | 5 | Sweden 1 | 746 | M | Sweden | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1493 | 5 | Brownsville 1 | 747 | F | Brownsville | Sweden | 1 | 239 | 1.143 | 19 | 28 | 47 | NA | NA | NA |
1494 | 5 | Sweden 1 | 747 | M | Sweden | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1495 | 5 | Dahomey 1 | 748 | F | Dahomey | Sweden | 1 | 282 | 0.976 | 5 | 9 | 14 | NA | NA | NA |
1496 | 5 | Sweden 1 | 748 | M | Sweden | Dahomey | 1 | 252 | 1.047 | NA | NA | NA | 21 | 7 | 0.7500000 |
1497 | 5 | Israel 1 | 749 | F | Israel | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1498 | 5 | Sweden 1 | 749 | M | Sweden | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1499 | 5 | Sweden 1 | 750 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1500 | 5 | Sweden 1 | 750 | M | Sweden | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1501 | 5 | Barcelona 2 | 751 | F | Barcelona | Barcelona | 1 | 240 | 1.053 | 10 | 18 | 28 | NA | NA | NA |
1502 | 5 | Barcelona 2 | 751 | M | Barcelona | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1503 | 5 | Brownsville 2 | 752 | F | Brownsville | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1504 | 5 | Barcelona 2 | 752 | M | Barcelona | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1505 | 5 | Dahomey 2 | 753 | F | Dahomey | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1506 | 5 | Barcelona 2 | 753 | M | Barcelona | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1507 | 5 | Israel 2 | 754 | F | Israel | Barcelona | 1 | 260 | NA | 28 | 24 | 52 | NA | NA | NA |
1508 | 5 | Barcelona 2 | 754 | M | Barcelona | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1509 | 5 | Sweden 2 | 755 | F | Sweden | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1510 | 5 | Barcelona 2 | 755 | M | Barcelona | Sweden | 1 | 250 | 1.024 | NA | NA | NA | 10 | 0 | 1.0000000 |
1511 | 5 | Barcelona 2 | 756 | F | Barcelona | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1512 | 5 | Brownsville 2 | 756 | M | Brownsville | Barcelona | 1 | 257 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1513 | 5 | Brownsville 2 | 757 | F | Brownsville | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1514 | 5 | Brownsville 2 | 757 | M | Brownsville | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1515 | 5 | Dahomey 2 | 758 | F | Dahomey | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1516 | 5 | Brownsville 2 | 758 | M | Brownsville | Dahomey | 1 | 259 | 1.084 | NA | NA | NA | 0 | 0 | 0.0000000 |
1517 | 5 | Israel 2 | 759 | F | Israel | Brownsville | 1 | 259 | NA | 0 | 0 | 0 | NA | NA | NA |
1518 | 5 | Brownsville 2 | 759 | M | Brownsville | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1519 | 5 | Sweden 2 | 760 | F | Sweden | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1520 | 5 | Brownsville 2 | 760 | M | Brownsville | Sweden | 1 | 259 | 1.042 | NA | NA | NA | 0 | 88 | 0.0000000 |
1521 | 5 | Barcelona 2 | 761 | F | Barcelona | Dahomey | 1 | 288 | 0.869 | 0 | 0 | 0 | NA | NA | NA |
1522 | 5 | Dahomey 2 | 761 | M | Dahomey | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1523 | 5 | Brownsville 2 | 762 | F | Brownsville | Dahomey | 1 | 267 | 1.209 | 24 | 38 | 62 | NA | NA | NA |
1524 | 5 | Dahomey 2 | 762 | M | Dahomey | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1525 | 5 | Dahomey 2 | 763 | F | Dahomey | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1526 | 5 | Dahomey 2 | 763 | M | Dahomey | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1527 | 5 | Israel 2 | 764 | F | Israel | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1528 | 5 | Dahomey 2 | 764 | M | Dahomey | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1529 | 5 | Sweden 2 | 765 | F | Sweden | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1530 | 5 | Dahomey 2 | 765 | M | Dahomey | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1531 | 5 | Barcelona 2 | 766 | F | Barcelona | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1532 | 5 | Israel 2 | 766 | M | Israel | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1533 | 5 | Brownsville 2 | 767 | F | Brownsville | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1534 | 5 | Israel 2 | 767 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1535 | 5 | Dahomey 2 | 768 | F | Dahomey | Israel | 1 | 245 | 1.178 | 37 | 29 | 66 | NA | NA | NA |
1536 | 5 | Israel 2 | 768 | M | Israel | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1537 | 5 | Israel 2 | 769 | F | Israel | Israel | 1 | 247 | 1.221 | 38 | 25 | 63 | NA | NA | NA |
1538 | 5 | Israel 2 | 769 | M | Israel | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1539 | 5 | Sweden 2 | 770 | F | Sweden | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1540 | 5 | Israel 2 | 770 | M | Israel | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1541 | 5 | Barcelona 2 | 771 | F | Barcelona | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1542 | 5 | Sweden 2 | 771 | M | Sweden | Barcelona | 1 | 242 | 1.040 | NA | NA | NA | 12 | 64 | 0.1578947 |
1543 | 5 | Brownsville 2 | 772 | F | Brownsville | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1544 | 5 | Sweden 2 | 772 | M | Sweden | Brownsville | 1 | 232 | NA | NA | NA | NA | 50 | 6 | 0.8928571 |
1547 | 5 | Israel 2 | 774 | F | Israel | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1548 | 5 | Sweden 2 | 774 | M | Sweden | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1549 | 5 | Sweden 2 | 775 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1550 | 5 | Sweden 2 | 775 | M | Sweden | Sweden | 1 | 262 | 0.971 | NA | NA | NA | 0 | 12 | 0.0000000 |
1551 | 5 | Barcelona 2 | 776 | F | Barcelona | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1552 | 5 | Barcelona 2 | 776 | M | Barcelona | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1553 | 5 | Brownsville 2 | 777 | F | Brownsville | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1554 | 5 | Barcelona 2 | 777 | M | Barcelona | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1555 | 5 | Dahomey 2 | 778 | F | Dahomey | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1556 | 5 | Barcelona 2 | 778 | M | Barcelona | Dahomey | 1 | 263 | 0.978 | NA | NA | NA | 116 | 37 | 0.7581699 |
1557 | 5 | Israel 2 | 779 | F | Israel | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1558 | 5 | Barcelona 2 | 779 | M | Barcelona | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1559 | 5 | Sweden 2 | 780 | F | Sweden | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1560 | 5 | Barcelona 2 | 780 | M | Barcelona | Sweden | 1 | 270 | 1.011 | NA | NA | NA | 16 | 7 | 0.6956522 |
1561 | 5 | Barcelona 2 | 781 | F | Barcelona | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1562 | 5 | Brownsville 2 | 781 | M | Brownsville | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1563 | 5 | Brownsville 2 | 782 | F | Brownsville | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1564 | 5 | Brownsville 2 | 782 | M | Brownsville | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1565 | 5 | Dahomey 2 | 783 | F | Dahomey | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1566 | 5 | Brownsville 2 | 783 | M | Brownsville | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1567 | 5 | Israel 2 | 784 | F | Israel | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1568 | 5 | Brownsville 2 | 784 | M | Brownsville | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1569 | 5 | Sweden 2 | 785 | F | Sweden | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1570 | 5 | Brownsville 2 | 785 | M | Brownsville | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1573 | 5 | Brownsville 2 | 787 | F | Brownsville | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1574 | 5 | Dahomey 2 | 787 | M | Dahomey | Brownsville | 1 | 275 | 0.823 | NA | NA | NA | 0 | 79 | 0.0000000 |
1575 | 5 | Dahomey 2 | 788 | F | Dahomey | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1576 | 5 | Dahomey 2 | 788 | M | Dahomey | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1577 | 5 | Israel 2 | 789 | F | Israel | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1578 | 5 | Dahomey 2 | 789 | M | Dahomey | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1579 | 5 | Sweden 2 | 790 | F | Sweden | Dahomey | 1 | 253 | 0.964 | 2 | 6 | 8 | NA | NA | NA |
1580 | 5 | Dahomey 2 | 790 | M | Dahomey | Sweden | 1 | 273 | 0.902 | NA | NA | NA | 0 | 63 | 0.0000000 |
1581 | 5 | Barcelona 2 | 791 | F | Barcelona | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1582 | 5 | Israel 2 | 791 | M | Israel | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1583 | 5 | Brownsville 2 | 792 | F | Brownsville | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1584 | 5 | Israel 2 | 792 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1585 | 5 | Dahomey 2 | 793 | F | Dahomey | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1586 | 5 | Israel 2 | 793 | M | Israel | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1587 | 5 | Israel 2 | 794 | F | Israel | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1588 | 5 | Israel 2 | 794 | M | Israel | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1589 | 5 | Sweden 2 | 795 | F | Sweden | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1590 | 5 | Israel 2 | 795 | M | Israel | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1591 | 5 | Barcelona 2 | 796 | F | Barcelona | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1592 | 5 | Sweden 2 | 796 | M | Sweden | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1595 | 5 | Dahomey 2 | 798 | F | Dahomey | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1596 | 5 | Sweden 2 | 798 | M | Sweden | Dahomey | 1 | 246 | NA | NA | NA | NA | 69 | 0 | 1.0000000 |
1597 | 5 | Israel 2 | 799 | F | Israel | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1598 | 5 | Sweden 2 | 799 | M | Sweden | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1599 | 5 | Sweden 2 | 800 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1600 | 5 | Sweden 2 | 800 | M | Sweden | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1601 | 5 | Barcelona 1 | 801 | F | Barcelona | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1602 | 5 | Barcelona 1 | 801 | M | Barcelona | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1603 | 5 | Brownsville 1 | 802 | F | Brownsville | Barcelona | 1 | 280 | NA | 0 | 0 | 0 | NA | NA | NA |
1604 | 5 | Barcelona 1 | 802 | M | Barcelona | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1605 | 5 | Dahomey 1 | 803 | F | Dahomey | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1606 | 5 | Barcelona 1 | 803 | M | Barcelona | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1607 | 5 | Israel 1 | 804 | F | Israel | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1608 | 5 | Barcelona 1 | 804 | M | Barcelona | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1609 | 5 | Sweden 1 | 805 | F | Sweden | Barcelona | 1 | 286 | 0.847 | 15 | 14 | 29 | NA | NA | NA |
1610 | 5 | Barcelona 1 | 805 | M | Barcelona | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1611 | 5 | Barcelona 1 | 806 | F | Barcelona | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1612 | 5 | Brownsville 1 | 806 | M | Brownsville | Barcelona | 1 | 268 | 0.905 | NA | NA | NA | 0 | 11 | 0.0000000 |
1613 | 5 | Brownsville 1 | 807 | F | Brownsville | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1614 | 5 | Brownsville 1 | 807 | M | Brownsville | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1615 | 5 | Dahomey 1 | 808 | F | Dahomey | Brownsville | 1 | 241 | 1.187 | 28 | 21 | 49 | NA | NA | NA |
1616 | 5 | Brownsville 1 | 808 | M | Brownsville | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1617 | 5 | Israel 1 | 809 | F | Israel | Brownsville | 1 | 272 | 0.926 | 16 | 22 | 38 | NA | NA | NA |
1618 | 5 | Brownsville 1 | 809 | M | Brownsville | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1619 | 5 | Sweden 1 | 810 | F | Sweden | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1620 | 5 | Brownsville 1 | 810 | M | Brownsville | Sweden | 1 | 260 | 1.010 | NA | NA | NA | 0 | 41 | 0.0000000 |
1621 | 5 | Barcelona 1 | 811 | F | Barcelona | Dahomey | 1 | 263 | 0.979 | 20 | 20 | 40 | NA | NA | NA |
1622 | 5 | Dahomey 1 | 811 | M | Dahomey | Barcelona | 1 | 259 | 0.988 | NA | NA | NA | 174 | 0 | 1.0000000 |
1623 | 5 | Brownsville 1 | 812 | F | Brownsville | Dahomey | 1 | 246 | 1.078 | 14 | 14 | 28 | NA | NA | NA |
1624 | 5 | Dahomey 1 | 812 | M | Dahomey | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1625 | 5 | Dahomey 1 | 813 | F | Dahomey | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1626 | 5 | Dahomey 1 | 813 | M | Dahomey | Dahomey | 1 | 246 | 0.989 | NA | NA | NA | 56 | 0 | 1.0000000 |
1627 | 5 | Israel 1 | 814 | F | Israel | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1628 | 5 | Dahomey 1 | 814 | M | Dahomey | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1629 | 5 | Sweden 1 | 815 | F | Sweden | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1630 | 5 | Dahomey 1 | 815 | M | Dahomey | Sweden | 1 | 246 | 0.976 | NA | NA | NA | 116 | 9 | 0.9280000 |
1631 | 5 | Barcelona 1 | 816 | F | Barcelona | Israel | 1 | 253 | 1.068 | 20 | 26 | 46 | NA | NA | NA |
1632 | 5 | Israel 1 | 816 | M | Israel | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1633 | 5 | Brownsville 1 | 817 | F | Brownsville | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1634 | 5 | Israel 1 | 817 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1635 | 5 | Dahomey 1 | 818 | F | Dahomey | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1636 | 5 | Israel 1 | 818 | M | Israel | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1637 | 5 | Israel 1 | 819 | F | Israel | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1638 | 5 | Israel 1 | 819 | M | Israel | Israel | 1 | 280 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1639 | 5 | Sweden 1 | 820 | F | Sweden | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1640 | 5 | Israel 1 | 820 | M | Israel | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1641 | 5 | Barcelona 1 | 821 | F | Barcelona | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1642 | 5 | Sweden 1 | 821 | M | Sweden | Barcelona | 1 | 274 | 0.912 | NA | NA | NA | 9 | 0 | 1.0000000 |
1643 | 5 | Brownsville 1 | 822 | F | Brownsville | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1644 | 5 | Sweden 1 | 822 | M | Sweden | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1645 | 5 | Dahomey 1 | 823 | F | Dahomey | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1646 | 5 | Sweden 1 | 823 | M | Sweden | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1647 | 5 | Israel 1 | 824 | F | Israel | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1648 | 5 | Sweden 1 | 824 | M | Sweden | Israel | 1 | 263 | 0.939 | NA | NA | NA | 54 | 62 | 0.4655172 |
1649 | 5 | Sweden 1 | 825 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1650 | 5 | Sweden 1 | 825 | M | Sweden | Sweden | 1 | 270 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1651 | 5 | Barcelona 1 | 826 | F | Barcelona | Barcelona | 1 | 244 | 1.190 | 36 | 23 | 59 | NA | NA | NA |
1652 | 5 | Barcelona 1 | 826 | M | Barcelona | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1653 | 5 | Brownsville 1 | 827 | F | Brownsville | Barcelona | 1 | 280 | 1.027 | 17 | 23 | 40 | NA | NA | NA |
1654 | 5 | Barcelona 1 | 827 | M | Barcelona | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1655 | 5 | Dahomey 1 | 828 | F | Dahomey | Barcelona | 1 | 259 | 1.054 | 27 | 23 | 50 | NA | NA | NA |
1656 | 5 | Barcelona 1 | 828 | M | Barcelona | Dahomey | 1 | NA | 0.983 | NA | NA | NA | 15 | 83 | 0.1530612 |
1657 | 5 | Israel 1 | 829 | F | Israel | Barcelona | 1 | 252 | 1.089 | 28 | 36 | 64 | NA | NA | NA |
1658 | 5 | Barcelona 1 | 829 | M | Barcelona | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1659 | 5 | Sweden 1 | 830 | F | Sweden | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1660 | 5 | Barcelona 1 | 830 | M | Barcelona | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1661 | 5 | Barcelona 1 | 831 | F | Barcelona | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1662 | 5 | Brownsville 1 | 831 | M | Brownsville | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1663 | 5 | Brownsville 1 | 832 | F | Brownsville | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1664 | 5 | Brownsville 1 | 832 | M | Brownsville | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1665 | 5 | Dahomey 1 | 833 | F | Dahomey | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1666 | 5 | Brownsville 1 | 833 | M | Brownsville | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1667 | 5 | Israel 1 | 834 | F | Israel | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1668 | 5 | Brownsville 1 | 834 | M | Brownsville | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1669 | 5 | Sweden 1 | 835 | F | Sweden | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1670 | 5 | Brownsville 1 | 835 | M | Brownsville | Sweden | 1 | 261 | 0.945 | NA | NA | NA | 0 | 89 | 0.0000000 |
1671 | 5 | Barcelona 1 | 836 | F | Barcelona | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1672 | 5 | Dahomey 1 | 836 | M | Dahomey | Barcelona | 1 | 249 | 0.984 | NA | NA | NA | 0 | 35 | 0.0000000 |
1673 | 5 | Brownsville 1 | 837 | F | Brownsville | Dahomey | 1 | 251 | 1.013 | 23 | 13 | 36 | NA | NA | NA |
1674 | 5 | Dahomey 1 | 837 | M | Dahomey | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1675 | 5 | Dahomey 1 | 838 | F | Dahomey | Dahomey | 1 | 288 | NA | 0 | 0 | 0 | NA | NA | NA |
1676 | 5 | Dahomey 1 | 838 | M | Dahomey | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1677 | 5 | Israel 1 | 839 | F | Israel | Dahomey | 1 | 251 | 1.034 | 21 | 26 | 47 | NA | NA | NA |
1678 | 5 | Dahomey 1 | 839 | M | Dahomey | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1679 | 5 | Sweden 1 | 840 | F | Sweden | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1680 | 5 | Dahomey 1 | 840 | M | Dahomey | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1681 | 5 | Barcelona 1 | 841 | F | Barcelona | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1682 | 5 | Israel 1 | 841 | M | Israel | Barcelona | 1 | 252 | 0.969 | NA | NA | NA | 0 | 0 | 0.0000000 |
1683 | 5 | Brownsville 1 | 842 | F | Brownsville | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1684 | 5 | Israel 1 | 842 | M | Israel | Brownsville | 1 | 253 | 0.936 | NA | NA | NA | 32 | 47 | 0.4050633 |
1685 | 5 | Dahomey 1 | 843 | F | Dahomey | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1686 | 5 | Israel 1 | 843 | M | Israel | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1687 | 5 | Israel 1 | 844 | F | Israel | Israel | 1 | 247 | 0.995 | 17 | 14 | 31 | NA | NA | NA |
1688 | 5 | Israel 1 | 844 | M | Israel | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1689 | 5 | Sweden 1 | 845 | F | Sweden | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1690 | 5 | Israel 1 | 845 | M | Israel | Sweden | 1 | 270 | 0.973 | NA | NA | NA | 0 | 74 | 0.0000000 |
1691 | 5 | Barcelona 1 | 846 | F | Barcelona | Sweden | 1 | 238 | 1.023 | 27 | 21 | 48 | NA | NA | NA |
1692 | 5 | Sweden 1 | 846 | M | Sweden | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1693 | 5 | Brownsville 1 | 847 | F | Brownsville | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1694 | 5 | Sweden 1 | 847 | M | Sweden | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1695 | 5 | Dahomey 1 | 848 | F | Dahomey | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1696 | 5 | Sweden 1 | 848 | M | Sweden | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1697 | 5 | Israel 1 | 849 | F | Israel | Sweden | 1 | 274 | 0.962 | 0 | 0 | 0 | NA | NA | NA |
1698 | 5 | Sweden 1 | 849 | M | Sweden | Israel | 1 | 270 | 0.880 | NA | NA | NA | 0 | 33 | 0.0000000 |
1699 | 5 | Sweden 1 | 850 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1700 | 5 | Sweden 1 | 850 | M | Sweden | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1701 | 5 | Barcelona 2 | 851 | F | Barcelona | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1702 | 5 | Barcelona 2 | 851 | M | Barcelona | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1703 | 5 | Brownsville 2 | 852 | F | Brownsville | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1704 | 5 | Barcelona 2 | 852 | M | Barcelona | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1705 | 5 | Dahomey 2 | 853 | F | Dahomey | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1706 | 5 | Barcelona 2 | 853 | M | Barcelona | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1707 | 5 | Israel 2 | 854 | F | Israel | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1708 | 5 | Barcelona 2 | 854 | M | Barcelona | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1709 | 5 | Sweden 2 | 855 | F | Sweden | Barcelona | 1 | 273 | 0.967 | 9 | 11 | 20 | NA | NA | NA |
1710 | 5 | Barcelona 2 | 855 | M | Barcelona | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1711 | 5 | Barcelona 2 | 856 | F | Barcelona | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1712 | 5 | Brownsville 2 | 856 | M | Brownsville | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1713 | 5 | Brownsville 2 | 857 | F | Brownsville | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1714 | 5 | Brownsville 2 | 857 | M | Brownsville | Brownsville | 1 | 269 | 0.928 | NA | NA | NA | 0 | 101 | 0.0000000 |
1715 | 5 | Dahomey 2 | 858 | F | Dahomey | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1716 | 5 | Brownsville 2 | 858 | M | Brownsville | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1717 | 5 | Israel 2 | 859 | F | Israel | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1718 | 5 | Brownsville 2 | 859 | M | Brownsville | Israel | 1 | 266 | 1.067 | NA | NA | NA | 0 | 52 | 0.0000000 |
1719 | 5 | Sweden 2 | 860 | F | Sweden | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1720 | 5 | Brownsville 2 | 860 | M | Brownsville | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1721 | 5 | Barcelona 2 | 861 | F | Barcelona | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1722 | 5 | Dahomey 2 | 861 | M | Dahomey | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1723 | 5 | Brownsville 2 | 862 | F | Brownsville | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1724 | 5 | Dahomey 2 | 862 | M | Dahomey | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1725 | 5 | Dahomey 2 | 863 | F | Dahomey | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1726 | 5 | Dahomey 2 | 863 | M | Dahomey | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1727 | 5 | Israel 2 | 864 | F | Israel | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1728 | 5 | Dahomey 2 | 864 | M | Dahomey | Israel | 1 | 271 | 0.782 | NA | NA | NA | 0 | 23 | 0.0000000 |
1729 | 5 | Sweden 2 | 865 | F | Sweden | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1730 | 5 | Dahomey 2 | 865 | M | Dahomey | Sweden | 1 | 281 | 1.017 | NA | NA | NA | 0 | 59 | 0.0000000 |
1731 | 5 | Barcelona 2 | 866 | F | Barcelona | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1732 | 5 | Israel 2 | 866 | M | Israel | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1733 | 5 | Brownsville 2 | 867 | F | Brownsville | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1734 | 5 | Israel 2 | 867 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1735 | 5 | Dahomey 2 | 868 | F | Dahomey | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1736 | 5 | Israel 2 | 868 | M | Israel | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1737 | 5 | Israel 2 | 869 | F | Israel | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1738 | 5 | Israel 2 | 869 | M | Israel | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1739 | 5 | Sweden 2 | 870 | F | Sweden | Israel | 1 | 281 | NA | 0 | 0 | 0 | NA | NA | NA |
1740 | 5 | Israel 2 | 870 | M | Israel | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1741 | 5 | Barcelona 2 | 871 | F | Barcelona | Sweden | 1 | 290 | 1.097 | 29 | 29 | 58 | NA | NA | NA |
1742 | 5 | Sweden 2 | 871 | M | Sweden | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1743 | 5 | Brownsville 2 | 872 | F | Brownsville | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1744 | 5 | Sweden 2 | 872 | M | Sweden | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1745 | 5 | Dahomey 2 | 873 | F | Dahomey | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1746 | 5 | Sweden 2 | 873 | M | Sweden | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1747 | 5 | Israel 2 | 874 | F | Israel | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1748 | 5 | Sweden 2 | 874 | M | Sweden | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1749 | 5 | Sweden 2 | 875 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1750 | 5 | Sweden 2 | 875 | M | Sweden | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1751 | 5 | Barcelona 2 | 876 | F | Barcelona | Barcelona | 1 | 259 | 1.090 | 20 | 32 | 52 | NA | NA | NA |
1752 | 5 | Barcelona 2 | 876 | M | Barcelona | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1753 | 5 | Brownsville 2 | 877 | F | Brownsville | Barcelona | 1 | 277 | NA | 0 | 0 | 0 | NA | NA | NA |
1754 | 5 | Barcelona 2 | 877 | M | Barcelona | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1755 | 5 | Dahomey 2 | 878 | F | Dahomey | Barcelona | 1 | 250 | NA | 15 | 14 | 29 | NA | NA | NA |
1756 | 5 | Barcelona 2 | 878 | M | Barcelona | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1757 | 5 | Israel 2 | 879 | F | Israel | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1758 | 5 | Barcelona 2 | 879 | M | Barcelona | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1759 | 5 | Sweden 2 | 880 | F | Sweden | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1760 | 5 | Barcelona 2 | 880 | M | Barcelona | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1761 | 5 | Barcelona 2 | 881 | F | Barcelona | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1762 | 5 | Brownsville 2 | 881 | M | Brownsville | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1763 | 5 | Brownsville 2 | 882 | F | Brownsville | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1764 | 5 | Brownsville 2 | 882 | M | Brownsville | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1765 | 5 | Dahomey 2 | 883 | F | Dahomey | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1766 | 5 | Brownsville 2 | 883 | M | Brownsville | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1767 | 5 | Israel 2 | 884 | F | Israel | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1768 | 5 | Brownsville 2 | 884 | M | Brownsville | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1769 | 5 | Sweden 2 | 885 | F | Sweden | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1770 | 5 | Brownsville 2 | 885 | M | Brownsville | Sweden | 1 | 285 | 0.926 | NA | NA | NA | 0 | 91 | 0.0000000 |
1771 | 5 | Barcelona 2 | 886 | F | Barcelona | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1772 | 5 | Dahomey 2 | 886 | M | Dahomey | Barcelona | 1 | 286 | 0.851 | NA | NA | NA | 0 | 18 | 0.0000000 |
1773 | 5 | Brownsville 2 | 887 | F | Brownsville | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1774 | 5 | Dahomey 2 | 887 | M | Dahomey | Brownsville | 1 | 276 | 0.821 | NA | NA | NA | 0 | 73 | 0.0000000 |
1775 | 5 | Dahomey 2 | 888 | F | Dahomey | Dahomey | 1 | 272 | NA | 0 | 0 | 0 | NA | NA | NA |
1776 | 5 | Dahomey 2 | 888 | M | Dahomey | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1777 | 5 | Israel 2 | 889 | F | Israel | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1778 | 5 | Dahomey 2 | 889 | M | Dahomey | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1779 | 5 | Sweden 2 | 890 | F | Sweden | Dahomey | 1 | 256 | 0.977 | 13 | 23 | 36 | NA | NA | NA |
1780 | 5 | Dahomey 2 | 890 | M | Dahomey | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1781 | 5 | Barcelona 2 | 891 | F | Barcelona | Israel | 1 | 272 | 1.056 | 0 | 0 | 0 | NA | NA | NA |
1782 | 5 | Israel 2 | 891 | M | Israel | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1783 | 5 | Brownsville 2 | 892 | F | Brownsville | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1784 | 5 | Israel 2 | 892 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1785 | 5 | Dahomey 2 | 893 | F | Dahomey | Israel | 1 | 245 | 1.062 | 33 | 21 | 54 | NA | NA | NA |
1786 | 5 | Israel 2 | 893 | M | Israel | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1787 | 5 | Israel 2 | 894 | F | Israel | Israel | 1 | 242 | 1.198 | 0 | 0 | 0 | NA | NA | NA |
1788 | 5 | Israel 2 | 894 | M | Israel | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1789 | 5 | Sweden 2 | 895 | F | Sweden | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1790 | 5 | Israel 2 | 895 | M | Israel | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1791 | 5 | Barcelona 2 | 896 | F | Barcelona | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1792 | 5 | Sweden 2 | 896 | M | Sweden | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1793 | 5 | Brownsville 2 | 897 | F | Brownsville | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1794 | 5 | Sweden 2 | 897 | M | Sweden | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1795 | 5 | Dahomey 2 | 898 | F | Dahomey | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1796 | 5 | Sweden 2 | 898 | M | Sweden | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1797 | 5 | Israel 2 | 899 | F | Israel | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1798 | 5 | Sweden 2 | 899 | M | Sweden | Israel | 1 | 250 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1799 | 5 | Sweden 2 | 900 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1800 | 5 | Sweden 2 | 900 | M | Sweden | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1801 | 6 | Barcelona 1 | 901 | F | Barcelona | Barcelona | 1 | 252 | NA | 20 | 16 | 36 | NA | NA | NA |
1802 | 6 | Barcelona 1 | 901 | M | Barcelona | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1803 | 6 | Brownsville 1 | 902 | F | Brownsville | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1804 | 6 | Barcelona 1 | 902 | M | Barcelona | Brownsville | 1 | 241 | 1.060 | NA | NA | NA | 36 | 68 | 0.3461538 |
1807 | 6 | Israel 1 | 904 | F | Israel | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1808 | 6 | Barcelona 1 | 904 | M | Barcelona | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1809 | 6 | Sweden 1 | 905 | F | Sweden | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1810 | 6 | Barcelona 1 | 905 | M | Barcelona | Sweden | 1 | 260 | 1.084 | NA | NA | NA | 97 | 4 | 0.9603960 |
1811 | 6 | Barcelona 1 | 906 | F | Barcelona | Brownsville | 1 | NA | 1.177 | 31 | 35 | 66 | NA | NA | NA |
1812 | 6 | Brownsville 1 | 906 | M | Brownsville | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1815 | 6 | Dahomey 1 | 908 | F | Dahomey | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1816 | 6 | Brownsville 1 | 908 | M | Brownsville | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1817 | 6 | Israel 1 | 909 | F | Israel | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1818 | 6 | Brownsville 1 | 909 | M | Brownsville | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1819 | 6 | Sweden 1 | 910 | F | Sweden | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1820 | 6 | Brownsville 1 | 910 | M | Brownsville | Sweden | 1 | 257 | 0.898 | NA | NA | NA | 0 | 34 | 0.0000000 |
1821 | 6 | Barcelona 1 | 911 | F | Barcelona | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1822 | 6 | Dahomey 1 | 911 | M | Dahomey | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1823 | 6 | Brownsville 1 | 912 | F | Brownsville | Dahomey | 1 | 242 | 1.018 | 17 | 18 | 35 | NA | NA | NA |
1824 | 6 | Dahomey 1 | 912 | M | Dahomey | Brownsville | 1 | 260 | 0.932 | NA | NA | NA | 0 | 74 | 0.0000000 |
1825 | 6 | Dahomey 1 | 913 | F | Dahomey | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1826 | 6 | Dahomey 1 | 913 | M | Dahomey | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1827 | 6 | Israel 1 | 914 | F | Israel | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1828 | 6 | Dahomey 1 | 914 | M | Dahomey | Israel | 1 | 251 | 0.872 | NA | NA | NA | 0 | 35 | 0.0000000 |
1829 | 6 | Sweden 1 | 915 | F | Sweden | Dahomey | 1 | 226 | 1.096 | 30 | 37 | 67 | NA | NA | NA |
1830 | 6 | Dahomey 1 | 915 | M | Dahomey | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1831 | 6 | Barcelona 1 | 916 | F | Barcelona | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1832 | 6 | Israel 1 | 916 | M | Israel | Barcelona | 1 | 270 | 0.865 | NA | NA | NA | 0 | 101 | 0.0000000 |
1833 | 6 | Brownsville 1 | 917 | F | Brownsville | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1834 | 6 | Israel 1 | 917 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1835 | 6 | Dahomey 1 | 918 | F | Dahomey | Israel | 1 | 259 | 0.959 | 0 | 0 | 0 | NA | NA | NA |
1836 | 6 | Israel 1 | 918 | M | Israel | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1837 | 6 | Israel 1 | 919 | F | Israel | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1838 | 6 | Israel 1 | 919 | M | Israel | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1839 | 6 | Sweden 1 | 920 | F | Sweden | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1840 | 6 | Israel 1 | 920 | M | Israel | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1843 | 6 | Brownsville 1 | 922 | F | Brownsville | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1844 | 6 | Sweden 1 | 922 | M | Sweden | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1845 | 6 | Dahomey 1 | 923 | F | Dahomey | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1846 | 6 | Sweden 1 | 923 | M | Sweden | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1847 | 6 | Israel 1 | 924 | F | Israel | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1848 | 6 | Sweden 1 | 924 | M | Sweden | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1849 | 6 | Sweden 1 | 925 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1850 | 6 | Sweden 1 | 925 | M | Sweden | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1851 | 6 | Barcelona 1 | 926 | F | Barcelona | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1852 | 6 | Barcelona 1 | 926 | M | Barcelona | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1853 | 6 | Brownsville 1 | 927 | F | Brownsville | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1854 | 6 | Barcelona 1 | 927 | M | Barcelona | Brownsville | 1 | 269 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1855 | 6 | Dahomey 1 | 928 | F | Dahomey | Barcelona | 1 | 240 | 1.100 | 30 | 28 | 58 | NA | NA | NA |
1856 | 6 | Barcelona 1 | 928 | M | Barcelona | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1857 | 6 | Israel 1 | 929 | F | Israel | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1858 | 6 | Barcelona 1 | 929 | M | Barcelona | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1859 | 6 | Sweden 1 | 930 | F | Sweden | Barcelona | 1 | 252 | NA | 22 | 17 | 39 | NA | NA | NA |
1860 | 6 | Barcelona 1 | 930 | M | Barcelona | Sweden | 1 | 241 | NA | NA | NA | NA | 0 | 107 | 0.0000000 |
1861 | 6 | Barcelona 1 | 931 | F | Barcelona | Brownsville | 1 | 246 | NA | 0 | 0 | 0 | NA | NA | NA |
1862 | 6 | Brownsville 1 | 931 | M | Brownsville | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1863 | 6 | Brownsville 1 | 932 | F | Brownsville | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1864 | 6 | Brownsville 1 | 932 | M | Brownsville | Brownsville | 1 | 230 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1865 | 6 | Dahomey 1 | 933 | F | Dahomey | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1866 | 6 | Brownsville 1 | 933 | M | Brownsville | Dahomey | 1 | 247 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1867 | 6 | Israel 1 | 934 | F | Israel | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1868 | 6 | Brownsville 1 | 934 | M | Brownsville | Israel | 1 | 261 | 0.892 | NA | NA | NA | 0 | 56 | 0.0000000 |
1869 | 6 | Sweden 1 | 935 | F | Sweden | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1870 | 6 | Brownsville 1 | 935 | M | Brownsville | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1871 | 6 | Barcelona 1 | 936 | F | Barcelona | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1872 | 6 | Dahomey 1 | 936 | M | Dahomey | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1873 | 6 | Brownsville 1 | 937 | F | Brownsville | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1874 | 6 | Dahomey 1 | 937 | M | Dahomey | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1875 | 6 | Dahomey 1 | 938 | F | Dahomey | Dahomey | 1 | 256 | 0.976 | 0 | 0 | 0 | NA | NA | NA |
1876 | 6 | Dahomey 1 | 938 | M | Dahomey | Dahomey | 1 | 247 | NA | NA | NA | NA | 0 | 28 | 0.0000000 |
1877 | 6 | Israel 1 | 939 | F | Israel | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1878 | 6 | Dahomey 1 | 939 | M | Dahomey | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1879 | 6 | Sweden 1 | 940 | F | Sweden | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1880 | 6 | Dahomey 1 | 940 | M | Dahomey | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1881 | 6 | Barcelona 1 | 941 | F | Barcelona | Israel | 1 | 247 | NA | 0 | 0 | 0 | NA | NA | NA |
1882 | 6 | Israel 1 | 941 | M | Israel | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1883 | 6 | Brownsville 1 | 942 | F | Brownsville | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1884 | 6 | Israel 1 | 942 | M | Israel | Brownsville | 1 | 257 | 0.918 | NA | NA | NA | 0 | 105 | 0.0000000 |
1885 | 6 | Dahomey 1 | 943 | F | Dahomey | Israel | 1 | 254 | NA | 0 | 0 | 0 | NA | NA | NA |
1886 | 6 | Israel 1 | 943 | M | Israel | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1887 | 6 | Israel 1 | 944 | F | Israel | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1888 | 6 | Israel 1 | 944 | M | Israel | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1889 | 6 | Sweden 1 | 945 | F | Sweden | Israel | 1 | 247 | NA | 0 | 0 | 0 | NA | NA | NA |
1890 | 6 | Israel 1 | 945 | M | Israel | Sweden | 1 | 239 | NA | NA | NA | NA | 0 | 65 | 0.0000000 |
1891 | 6 | Barcelona 1 | 946 | F | Barcelona | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1892 | 6 | Sweden 1 | 946 | M | Sweden | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1893 | 6 | Brownsville 1 | 947 | F | Brownsville | Sweden | 1 | 239 | NA | 0 | 0 | 0 | NA | NA | NA |
1894 | 6 | Sweden 1 | 947 | M | Sweden | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1895 | 6 | Dahomey 1 | 948 | F | Dahomey | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1896 | 6 | Sweden 1 | 948 | M | Sweden | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1897 | 6 | Israel 1 | 949 | F | Israel | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1898 | 6 | Sweden 1 | 949 | M | Sweden | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1899 | 6 | Sweden 1 | 950 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1900 | 6 | Sweden 1 | 950 | M | Sweden | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1901 | 6 | Barcelona 1 | 951 | F | Barcelona | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1902 | 6 | Barcelona 1 | 951 | M | Barcelona | Barcelona | 1 | 273 | 0.865 | NA | NA | NA | 0 | 0 | 0.0000000 |
1903 | 6 | Brownsville 1 | 952 | F | Brownsville | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1904 | 6 | Barcelona 1 | 952 | M | Barcelona | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1905 | 6 | Dahomey 1 | 953 | F | Dahomey | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1906 | 6 | Barcelona 1 | 953 | M | Barcelona | Dahomey | 1 | 254 | 0.929 | NA | NA | NA | 0 | 35 | 0.0000000 |
1907 | 6 | Israel 1 | 954 | F | Israel | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1908 | 6 | Barcelona 1 | 954 | M | Barcelona | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1909 | 6 | Sweden 1 | 955 | F | Sweden | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1910 | 6 | Barcelona 1 | 955 | M | Barcelona | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1911 | 6 | Barcelona 1 | 956 | F | Barcelona | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1912 | 6 | Brownsville 1 | 956 | M | Brownsville | Barcelona | 1 | 247 | NA | NA | NA | NA | 0 | 48 | 0.0000000 |
1913 | 6 | Brownsville 1 | 957 | F | Brownsville | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1914 | 6 | Brownsville 1 | 957 | M | Brownsville | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1915 | 6 | Dahomey 1 | 958 | F | Dahomey | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1916 | 6 | Brownsville 1 | 958 | M | Brownsville | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1917 | 6 | Israel 1 | 959 | F | Israel | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1918 | 6 | Brownsville 1 | 959 | M | Brownsville | Israel | 1 | 244 | 0.706 | NA | NA | NA | 0 | 118 | 0.0000000 |
1919 | 6 | Sweden 1 | 960 | F | Sweden | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1920 | 6 | Brownsville 1 | 960 | M | Brownsville | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1921 | 6 | Barcelona 1 | 961 | F | Barcelona | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1922 | 6 | Dahomey 1 | 961 | M | Dahomey | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1923 | 6 | Brownsville 1 | 962 | F | Brownsville | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1924 | 6 | Dahomey 1 | 962 | M | Dahomey | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1925 | 6 | Dahomey 1 | 963 | F | Dahomey | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1926 | 6 | Dahomey 1 | 963 | M | Dahomey | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1927 | 6 | Israel 1 | 964 | F | Israel | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1928 | 6 | Dahomey 1 | 964 | M | Dahomey | Israel | 1 | 249 | 1.078 | NA | NA | NA | 84 | 22 | 0.7924528 |
1929 | 6 | Sweden 1 | 965 | F | Sweden | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1930 | 6 | Dahomey 1 | 965 | M | Dahomey | Sweden | 1 | 243 | 1.008 | NA | NA | NA | 49 | 6 | 0.8909091 |
1931 | 6 | Barcelona 1 | 966 | F | Barcelona | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1932 | 6 | Israel 1 | 966 | M | Israel | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1933 | 6 | Brownsville 1 | 967 | F | Brownsville | Israel | 1 | NA | 1.094 | 0 | 0 | 0 | NA | NA | NA |
1934 | 6 | Israel 1 | 967 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1935 | 6 | Dahomey 1 | 968 | F | Dahomey | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1936 | 6 | Israel 1 | 968 | M | Israel | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1937 | 6 | Israel 1 | 969 | F | Israel | Israel | 1 | 270 | NA | 0 | 0 | 0 | NA | NA | NA |
1938 | 6 | Israel 1 | 969 | M | Israel | Israel | 1 | 268 | 0.844 | NA | NA | NA | 73 | 36 | 0.6697248 |
1939 | 6 | Sweden 1 | 970 | F | Sweden | Israel | 1 | 253 | 1.068 | 28 | 18 | 46 | NA | NA | NA |
1940 | 6 | Israel 1 | 970 | M | Israel | Sweden | 1 | 271 | 0.900 | NA | NA | NA | 39 | 16 | 0.7090909 |
1941 | 6 | Barcelona 1 | 971 | F | Barcelona | Sweden | 1 | 245 | 1.040 | 21 | 25 | 46 | NA | NA | NA |
1942 | 6 | Sweden 1 | 971 | M | Sweden | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1943 | 6 | Brownsville 1 | 972 | F | Brownsville | Sweden | 1 | 241 | NA | 0 | 0 | 0 | NA | NA | NA |
1944 | 6 | Sweden 1 | 972 | M | Sweden | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1945 | 6 | Dahomey 1 | 973 | F | Dahomey | Sweden | 1 | 251 | NA | 1 | 1 | 2 | NA | NA | NA |
1946 | 6 | Sweden 1 | 973 | M | Sweden | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1951 | 6 | Barcelona 1 | 976 | F | Barcelona | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1952 | 6 | Barcelona 1 | 976 | M | Barcelona | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1953 | 6 | Brownsville 1 | 977 | F | Brownsville | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1954 | 6 | Barcelona 1 | 977 | M | Barcelona | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1955 | 6 | Dahomey 1 | 978 | F | Dahomey | Barcelona | 1 | 257 | 0.985 | 22 | 32 | 54 | NA | NA | NA |
1956 | 6 | Barcelona 1 | 978 | M | Barcelona | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1957 | 6 | Israel 1 | 979 | F | Israel | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1958 | 6 | Barcelona 1 | 979 | M | Barcelona | Israel | 1 | 277 | NA | NA | NA | NA | 0 | 66 | 0.0000000 |
1959 | 6 | Sweden 1 | 980 | F | Sweden | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1960 | 6 | Barcelona 1 | 980 | M | Barcelona | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1961 | 6 | Barcelona 1 | 981 | F | Barcelona | Brownsville | 1 | 255 | 0.989 | 8 | 8 | 16 | NA | NA | NA |
1962 | 6 | Brownsville 1 | 981 | M | Brownsville | Barcelona | 1 | 287 | 0.919 | NA | NA | NA | 0 | 66 | 0.0000000 |
1963 | 6 | Brownsville 1 | 982 | F | Brownsville | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1964 | 6 | Brownsville 1 | 982 | M | Brownsville | Brownsville | 1 | 247 | 0.999 | NA | NA | NA | 0 | 90 | 0.0000000 |
1965 | 6 | Dahomey 1 | 983 | F | Dahomey | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1966 | 6 | Brownsville 1 | 983 | M | Brownsville | Dahomey | 1 | NA | 0.910 | NA | NA | NA | 0 | 14 | 0.0000000 |
1967 | 6 | Israel 1 | 984 | F | Israel | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1968 | 6 | Brownsville 1 | 984 | M | Brownsville | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1969 | 6 | Sweden 1 | 985 | F | Sweden | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1970 | 6 | Brownsville 1 | 985 | M | Brownsville | Sweden | 1 | 240 | 0.999 | NA | NA | NA | 0 | 0 | 0.0000000 |
1971 | 6 | Barcelona 1 | 986 | F | Barcelona | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1972 | 6 | Dahomey 1 | 986 | M | Dahomey | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1973 | 6 | Brownsville 1 | 987 | F | Brownsville | Dahomey | 1 | 242 | 1.024 | 29 | 30 | 59 | NA | NA | NA |
1974 | 6 | Dahomey 1 | 987 | M | Dahomey | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1975 | 6 | Dahomey 1 | 988 | F | Dahomey | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1976 | 6 | Dahomey 1 | 988 | M | Dahomey | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1977 | 6 | Israel 1 | 989 | F | Israel | Dahomey | 1 | 242 | NA | 0 | 0 | 0 | NA | NA | NA |
1978 | 6 | Dahomey 1 | 989 | M | Dahomey | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1979 | 6 | Sweden 1 | 990 | F | Sweden | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1980 | 6 | Dahomey 1 | 990 | M | Dahomey | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1981 | 6 | Barcelona 1 | 991 | F | Barcelona | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1982 | 6 | Israel 1 | 991 | M | Israel | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1983 | 6 | Brownsville 1 | 992 | F | Brownsville | Israel | 1 | 245 | 0.996 | 23 | 18 | 41 | NA | NA | NA |
1984 | 6 | Israel 1 | 992 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1985 | 6 | Dahomey 1 | 993 | F | Dahomey | Israel | 1 | 250 | NA | 0 | 0 | 0 | NA | NA | NA |
1986 | 6 | Israel 1 | 993 | M | Israel | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1987 | 6 | Israel 1 | 994 | F | Israel | Israel | 1 | 272 | 0.994 | 2 | 4 | 6 | NA | NA | NA |
1988 | 6 | Israel 1 | 994 | M | Israel | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1989 | 6 | Sweden 1 | 995 | F | Sweden | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1990 | 6 | Israel 1 | 995 | M | Israel | Sweden | 1 | 243 | 1.012 | NA | NA | NA | 0 | 4 | 0.0000000 |
1991 | 6 | Barcelona 1 | 996 | F | Barcelona | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1992 | 6 | Sweden 1 | 996 | M | Sweden | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1993 | 6 | Brownsville 1 | 997 | F | Brownsville | Sweden | 1 | 242 | 1.033 | 26 | 28 | 54 | NA | NA | NA |
1994 | 6 | Sweden 1 | 997 | M | Sweden | Brownsville | 1 | 257 | 0.906 | NA | NA | NA | 48 | 60 | 0.4444444 |
1995 | 6 | Dahomey 1 | 998 | F | Dahomey | Sweden | 1 | 275 | 0.908 | 0 | 0 | 0 | NA | NA | NA |
1996 | 6 | Sweden 1 | 998 | M | Sweden | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
1997 | 6 | Israel 1 | 999 | F | Israel | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
1998 | 6 | Sweden 1 | 999 | M | Sweden | Israel | 1 | 248 | 0.987 | NA | NA | NA | 124 | 23 | 0.8435374 |
1999 | 6 | Sweden 1 | 1000 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2000 | 6 | Sweden 1 | 1000 | M | Sweden | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2001 | 6 | Barcelona 1 | 1001 | F | Barcelona | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2002 | 6 | Barcelona 1 | 1001 | M | Barcelona | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2003 | 6 | Brownsville 1 | 1002 | F | Brownsville | Barcelona | 1 | 269 | 1.042 | 23 | 15 | 38 | NA | NA | NA |
2004 | 6 | Barcelona 1 | 1002 | M | Barcelona | Brownsville | 1 | 271 | 0.963 | NA | NA | NA | 97 | 24 | 0.8016529 |
2005 | 6 | Dahomey 1 | 1003 | F | Dahomey | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2006 | 6 | Barcelona 1 | 1003 | M | Barcelona | Dahomey | 1 | 244 | 1.059 | NA | NA | NA | 58 | 9 | 0.8656716 |
2007 | 6 | Israel 1 | 1004 | F | Israel | Barcelona | 1 | 250 | NA | 27 | 21 | 48 | NA | NA | NA |
2008 | 6 | Barcelona 1 | 1004 | M | Barcelona | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2009 | 6 | Sweden 1 | 1005 | F | Sweden | Barcelona | 1 | 248 | 1.149 | 23 | 20 | 43 | NA | NA | NA |
2010 | 6 | Barcelona 1 | 1005 | M | Barcelona | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2011 | 6 | Barcelona 1 | 1006 | F | Barcelona | Brownsville | 1 | 274 | NA | 0 | 0 | 0 | NA | NA | NA |
2012 | 6 | Brownsville 1 | 1006 | M | Brownsville | Barcelona | 1 | 242 | 1.030 | NA | NA | NA | 0 | 32 | 0.0000000 |
2013 | 6 | Brownsville 1 | 1007 | F | Brownsville | Brownsville | 1 | 254 | NA | 0 | 0 | 0 | NA | NA | NA |
2014 | 6 | Brownsville 1 | 1007 | M | Brownsville | Brownsville | 1 | 243 | 0.947 | NA | NA | NA | 0 | 0 | 0.0000000 |
2015 | 6 | Dahomey 1 | 1008 | F | Dahomey | Brownsville | 1 | 253 | 1.157 | 48 | 26 | 74 | NA | NA | NA |
2016 | 6 | Brownsville 1 | 1008 | M | Brownsville | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2017 | 6 | Israel 1 | 1009 | F | Israel | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2018 | 6 | Brownsville 1 | 1009 | M | Brownsville | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2019 | 6 | Sweden 1 | 1010 | F | Sweden | Brownsville | 1 | 266 | 0.998 | 1 | 2 | 3 | NA | NA | NA |
2020 | 6 | Brownsville 1 | 1010 | M | Brownsville | Sweden | 1 | 288 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2021 | 6 | Barcelona 1 | 1011 | F | Barcelona | Dahomey | 1 | 247 | 1.092 | 16 | 26 | 42 | NA | NA | NA |
2022 | 6 | Dahomey 1 | 1011 | M | Dahomey | Barcelona | 1 | 250 | 1.060 | NA | NA | NA | 45 | 3 | 0.9375000 |
2023 | 6 | Brownsville 1 | 1012 | F | Brownsville | Dahomey | 1 | 272 | 1.005 | 14 | 21 | 35 | NA | NA | NA |
2024 | 6 | Dahomey 1 | 1012 | M | Dahomey | Brownsville | 1 | 284 | 1.021 | NA | NA | NA | 4 | 0 | 1.0000000 |
2025 | 6 | Dahomey 1 | 1013 | F | Dahomey | Dahomey | 1 | 245 | 1.074 | 38 | 32 | 70 | NA | NA | NA |
2026 | 6 | Dahomey 1 | 1013 | M | Dahomey | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2027 | 6 | Israel 1 | 1014 | F | Israel | Dahomey | 1 | 274 | 0.967 | 0 | 0 | 0 | NA | NA | NA |
2028 | 6 | Dahomey 1 | 1014 | M | Dahomey | Israel | 1 | 241 | 1.042 | NA | NA | NA | 0 | 54 | 0.0000000 |
2029 | 6 | Sweden 1 | 1015 | F | Sweden | Dahomey | 1 | 240 | NA | 33 | 31 | 64 | NA | NA | NA |
2030 | 6 | Dahomey 1 | 1015 | M | Dahomey | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2031 | 6 | Barcelona 1 | 1016 | F | Barcelona | Israel | 1 | 248 | 1.106 | 22 | 30 | 52 | NA | NA | NA |
2032 | 6 | Israel 1 | 1016 | M | Israel | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2033 | 6 | Brownsville 1 | 1017 | F | Brownsville | Israel | 1 | 245 | 1.063 | 7 | 9 | 16 | NA | NA | NA |
2034 | 6 | Israel 1 | 1017 | M | Israel | Brownsville | 1 | 272 | 0.876 | NA | NA | NA | 0 | 96 | 0.0000000 |
2035 | 6 | Dahomey 1 | 1018 | F | Dahomey | Israel | 1 | 252 | 0.985 | 18 | 21 | 39 | NA | NA | NA |
2036 | 6 | Israel 1 | 1018 | M | Israel | Dahomey | 1 | 263 | 0.904 | NA | NA | NA | 0 | 58 | 0.0000000 |
2037 | 6 | Israel 1 | 1019 | F | Israel | Israel | 1 | 231 | 1.053 | 28 | 25 | 53 | NA | NA | NA |
2038 | 6 | Israel 1 | 1019 | M | Israel | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2039 | 6 | Sweden 1 | 1020 | F | Sweden | Israel | 1 | 238 | 1.205 | 0 | 0 | 0 | NA | NA | NA |
2040 | 6 | Israel 1 | 1020 | M | Israel | Sweden | 1 | 247 | NA | NA | NA | NA | NA | NA | NA |
2041 | 6 | Barcelona 1 | 1021 | F | Barcelona | Sweden | 1 | 273 | 1.106 | 31 | 38 | 69 | NA | NA | NA |
2042 | 6 | Sweden 1 | 1021 | M | Sweden | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2043 | 6 | Brownsville 1 | 1022 | F | Brownsville | Sweden | 1 | 275 | NA | 0 | 0 | 0 | NA | NA | NA |
2044 | 6 | Sweden 1 | 1022 | M | Sweden | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2045 | 6 | Dahomey 1 | 1023 | F | Dahomey | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2046 | 6 | Sweden 1 | 1023 | M | Sweden | Dahomey | 1 | 252 | NA | NA | NA | NA | 0 | 19 | 0.0000000 |
2049 | 6 | Sweden 1 | 1025 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2050 | 6 | Sweden 1 | 1025 | M | Sweden | Sweden | 1 | 268 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2051 | 6 | Barcelona 1 | 1026 | F | Barcelona | Barcelona | 1 | 257 | 1.090 | 21 | 26 | 47 | NA | NA | NA |
2052 | 6 | Barcelona 1 | 1026 | M | Barcelona | Barcelona | 1 | 255 | 0.995 | NA | NA | NA | 90 | 0 | 1.0000000 |
2053 | 6 | Brownsville 1 | 1027 | F | Brownsville | Barcelona | 1 | 270 | NA | 0 | 0 | 0 | NA | NA | NA |
2054 | 6 | Barcelona 1 | 1027 | M | Barcelona | Brownsville | 1 | 255 | 0.995 | NA | NA | NA | 0 | 16 | 0.0000000 |
2055 | 6 | Dahomey 1 | 1028 | F | Dahomey | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2056 | 6 | Barcelona 1 | 1028 | M | Barcelona | Dahomey | 1 | 255 | 0.973 | NA | NA | NA | 70 | 68 | 0.5072464 |
2057 | 6 | Israel 1 | 1029 | F | Israel | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2058 | 6 | Barcelona 1 | 1029 | M | Barcelona | Israel | 1 | 275 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2059 | 6 | Sweden 1 | 1030 | F | Sweden | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2060 | 6 | Barcelona 1 | 1030 | M | Barcelona | Sweden | 1 | 268 | 0.965 | NA | NA | NA | 81 | 33 | 0.7105263 |
2063 | 6 | Brownsville 1 | 1032 | F | Brownsville | Brownsville | 1 | 245 | 1.165 | 39 | 34 | 73 | NA | NA | NA |
2064 | 6 | Brownsville 1 | 1032 | M | Brownsville | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2065 | 6 | Dahomey 1 | 1033 | F | Dahomey | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2066 | 6 | Brownsville 1 | 1033 | M | Brownsville | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2067 | 6 | Israel 1 | 1034 | F | Israel | Brownsville | 1 | 250 | 1.070 | 24 | 25 | 49 | NA | NA | NA |
2068 | 6 | Brownsville 1 | 1034 | M | Brownsville | Israel | 1 | 254 | NA | NA | NA | NA | 0 | 99 | 0.0000000 |
2069 | 6 | Sweden 1 | 1035 | F | Sweden | Brownsville | 1 | 258 | 0.994 | 0 | 0 | 0 | NA | NA | NA |
2070 | 6 | Brownsville 1 | 1035 | M | Brownsville | Sweden | 1 | 274 | 0.902 | NA | NA | NA | 0 | 43 | 0.0000000 |
2071 | 6 | Barcelona 1 | 1036 | F | Barcelona | Dahomey | 1 | 241 | 1.103 | 22 | 23 | 45 | NA | NA | NA |
2072 | 6 | Dahomey 1 | 1036 | M | Dahomey | Barcelona | 1 | 254 | 0.981 | NA | NA | NA | 14 | 29 | 0.3255814 |
2073 | 6 | Brownsville 1 | 1037 | F | Brownsville | Dahomey | 1 | 230 | 0.916 | 20 | 20 | 40 | NA | NA | NA |
2074 | 6 | Dahomey 1 | 1037 | M | Dahomey | Brownsville | 1 | 242 | 0.995 | NA | NA | NA | 0 | 17 | 0.0000000 |
2075 | 6 | Dahomey 1 | 1038 | F | Dahomey | Dahomey | 1 | 252 | 1.102 | 27 | 28 | 55 | NA | NA | NA |
2076 | 6 | Dahomey 1 | 1038 | M | Dahomey | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2077 | 6 | Israel 1 | 1039 | F | Israel | Dahomey | 1 | 259 | 1.076 | 19 | 18 | 37 | NA | NA | NA |
2078 | 6 | Dahomey 1 | 1039 | M | Dahomey | Israel | 1 | 275 | 0.944 | NA | NA | NA | 121 | 0 | 1.0000000 |
2079 | 6 | Sweden 1 | 1040 | F | Sweden | Dahomey | 1 | 269 | 1.003 | 24 | 23 | 47 | NA | NA | NA |
2080 | 6 | Dahomey 1 | 1040 | M | Dahomey | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2081 | 6 | Barcelona 1 | 1041 | F | Barcelona | Israel | 1 | 245 | 1.212 | 0 | 0 | 0 | NA | NA | NA |
2082 | 6 | Israel 1 | 1041 | M | Israel | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2083 | 6 | Brownsville 1 | 1042 | F | Brownsville | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2084 | 6 | Israel 1 | 1042 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2087 | 6 | Israel 1 | 1044 | F | Israel | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2088 | 6 | Israel 1 | 1044 | M | Israel | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2089 | 6 | Sweden 1 | 1045 | F | Sweden | Israel | 1 | 276 | 0.940 | 6 | 13 | 19 | NA | NA | NA |
2090 | 6 | Israel 1 | 1045 | M | Israel | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2091 | 6 | Barcelona 1 | 1046 | F | Barcelona | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2092 | 6 | Sweden 1 | 1046 | M | Sweden | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2093 | 6 | Brownsville 1 | 1047 | F | Brownsville | Sweden | 1 | 254 | 0.897 | 8 | 14 | 22 | NA | NA | NA |
2094 | 6 | Sweden 1 | 1047 | M | Sweden | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2095 | 6 | Dahomey 1 | 1048 | F | Dahomey | Sweden | 1 | 252 | 1.011 | 17 | 27 | 44 | NA | NA | NA |
2096 | 6 | Sweden 1 | 1048 | M | Sweden | Dahomey | 1 | 262 | 0.970 | NA | NA | NA | 106 | 8 | 0.9298246 |
2097 | 6 | Israel 1 | 1049 | F | Israel | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2098 | 6 | Sweden 1 | 1049 | M | Sweden | Israel | 1 | 286 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2099 | 6 | Sweden 1 | 1050 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2100 | 6 | Sweden 1 | 1050 | M | Sweden | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2101 | 6 | Barcelona 1 | 1051 | F | Barcelona | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2102 | 6 | Barcelona 1 | 1051 | M | Barcelona | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2103 | 6 | Brownsville 1 | 1052 | F | Brownsville | Barcelona | 1 | 252 | 1.085 | 27 | 28 | 55 | NA | NA | NA |
2104 | 6 | Barcelona 1 | 1052 | M | Barcelona | Brownsville | 1 | 277 | 0.917 | NA | NA | NA | 0 | 82 | 0.0000000 |
2105 | 6 | Dahomey 1 | 1053 | F | Dahomey | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2106 | 6 | Barcelona 1 | 1053 | M | Barcelona | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2107 | 6 | Israel 1 | 1054 | F | Israel | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2108 | 6 | Barcelona 1 | 1054 | M | Barcelona | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2109 | 6 | Sweden 1 | 1055 | F | Sweden | Barcelona | 1 | 259 | 0.936 | 10 | 9 | 19 | NA | NA | NA |
2110 | 6 | Barcelona 1 | 1055 | M | Barcelona | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2111 | 6 | Barcelona 1 | 1056 | F | Barcelona | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2112 | 6 | Brownsville 1 | 1056 | M | Brownsville | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2113 | 6 | Brownsville 1 | 1057 | F | Brownsville | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2114 | 6 | Brownsville 1 | 1057 | M | Brownsville | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2115 | 6 | Dahomey 1 | 1058 | F | Dahomey | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2116 | 6 | Brownsville 1 | 1058 | M | Brownsville | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2117 | 6 | Israel 1 | 1059 | F | Israel | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2118 | 6 | Brownsville 1 | 1059 | M | Brownsville | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2119 | 6 | Sweden 1 | 1060 | F | Sweden | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2120 | 6 | Brownsville 1 | 1060 | M | Brownsville | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2121 | 6 | Barcelona 1 | 1061 | F | Barcelona | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2122 | 6 | Dahomey 1 | 1061 | M | Dahomey | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2123 | 6 | Brownsville 1 | 1062 | F | Brownsville | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2124 | 6 | Dahomey 1 | 1062 | M | Dahomey | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2125 | 6 | Dahomey 1 | 1063 | F | Dahomey | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2126 | 6 | Dahomey 1 | 1063 | M | Dahomey | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2127 | 6 | Israel 1 | 1064 | F | Israel | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2128 | 6 | Dahomey 1 | 1064 | M | Dahomey | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2129 | 6 | Sweden 1 | 1065 | F | Sweden | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2130 | 6 | Dahomey 1 | 1065 | M | Dahomey | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2131 | 6 | Barcelona 1 | 1066 | F | Barcelona | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2132 | 6 | Israel 1 | 1066 | M | Israel | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2133 | 6 | Brownsville 1 | 1067 | F | Brownsville | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2134 | 6 | Israel 1 | 1067 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2135 | 6 | Dahomey 1 | 1068 | F | Dahomey | Israel | 1 | 256 | 0.999 | 28 | 18 | 46 | NA | NA | NA |
2136 | 6 | Israel 1 | 1068 | M | Israel | Dahomey | 1 | 275 | 0.827 | NA | NA | NA | 0 | 30 | 0.0000000 |
2137 | 6 | Israel 1 | 1069 | F | Israel | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2138 | 6 | Israel 1 | 1069 | M | Israel | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2139 | 6 | Sweden 1 | 1070 | F | Sweden | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2140 | 6 | Israel 1 | 1070 | M | Israel | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2141 | 6 | Barcelona 1 | 1071 | F | Barcelona | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2142 | 6 | Sweden 1 | 1071 | M | Sweden | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2143 | 6 | Brownsville 1 | 1072 | F | Brownsville | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2144 | 6 | Sweden 1 | 1072 | M | Sweden | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2145 | 6 | Dahomey 1 | 1073 | F | Dahomey | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2146 | 6 | Sweden 1 | 1073 | M | Sweden | Dahomey | 1 | 274 | NA | NA | NA | NA | 0 | 49 | 0.0000000 |
2147 | 6 | Israel 1 | 1074 | F | Israel | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2148 | 6 | Sweden 1 | 1074 | M | Sweden | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2149 | 6 | Sweden 1 | 1075 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2150 | 6 | Sweden 1 | 1075 | M | Sweden | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2151 | 6 | Barcelona 1 | 1076 | F | Barcelona | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2152 | 6 | Barcelona 1 | 1076 | M | Barcelona | Barcelona | 1 | 244 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2153 | 6 | Brownsville 1 | 1077 | F | Brownsville | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2154 | 6 | Barcelona 1 | 1077 | M | Barcelona | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2155 | 6 | Dahomey 1 | 1078 | F | Dahomey | Barcelona | 1 | 256 | 1.080 | 13 | 4 | 17 | NA | NA | NA |
2156 | 6 | Barcelona 1 | 1078 | M | Barcelona | Dahomey | 1 | 245 | 1.017 | NA | NA | NA | 46 | 38 | 0.5476190 |
2157 | 6 | Israel 1 | 1079 | F | Israel | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2158 | 6 | Barcelona 1 | 1079 | M | Barcelona | Israel | 1 | 243 | 1.059 | NA | NA | NA | 50 | 2 | 0.9615385 |
2159 | 6 | Sweden 1 | 1080 | F | Sweden | Barcelona | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2160 | 6 | Barcelona 1 | 1080 | M | Barcelona | Sweden | 1 | 261 | 0.952 | NA | NA | NA | 107 | 53 | 0.6687500 |
2161 | 6 | Barcelona 1 | 1081 | F | Barcelona | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2162 | 6 | Brownsville 1 | 1081 | M | Brownsville | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2163 | 6 | Brownsville 1 | 1082 | F | Brownsville | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2164 | 6 | Brownsville 1 | 1082 | M | Brownsville | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2165 | 6 | Dahomey 1 | 1083 | F | Dahomey | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2166 | 6 | Brownsville 1 | 1083 | M | Brownsville | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2167 | 6 | Israel 1 | 1084 | F | Israel | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2168 | 6 | Brownsville 1 | 1084 | M | Brownsville | Israel | 1 | 269 | NA | NA | NA | NA | 0 | 79 | 0.0000000 |
2169 | 6 | Sweden 1 | 1085 | F | Sweden | Brownsville | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2170 | 6 | Brownsville 1 | 1085 | M | Brownsville | Sweden | 1 | 260 | 0.993 | NA | NA | NA | 0 | 45 | 0.0000000 |
2171 | 6 | Barcelona 1 | 1086 | F | Barcelona | Dahomey | 1 | 258 | 1.057 | 25 | 28 | 53 | NA | NA | NA |
2172 | 6 | Dahomey 1 | 1086 | M | Dahomey | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2173 | 6 | Brownsville 1 | 1087 | F | Brownsville | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2174 | 6 | Dahomey 1 | 1087 | M | Dahomey | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2175 | 6 | Dahomey 1 | 1088 | F | Dahomey | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2176 | 6 | Dahomey 1 | 1088 | M | Dahomey | Dahomey | 1 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2177 | 6 | Israel 1 | 1089 | F | Israel | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2178 | 6 | Dahomey 1 | 1089 | M | Dahomey | Israel | 1 | 262 | 0.988 | NA | NA | NA | 0 | 48 | 0.0000000 |
2179 | 6 | Sweden 1 | 1090 | F | Sweden | Dahomey | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2180 | 6 | Dahomey 1 | 1090 | M | Dahomey | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2181 | 6 | Barcelona 1 | 1091 | F | Barcelona | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2182 | 6 | Israel 1 | 1091 | M | Israel | Barcelona | 1 | 257 | NA | NA | NA | NA | NA | NA | NA |
2183 | 6 | Brownsville 1 | 1092 | F | Brownsville | Israel | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2184 | 6 | Israel 1 | 1092 | M | Israel | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2185 | 6 | Dahomey 1 | 1093 | F | Dahomey | Israel | 1 | 275 | NA | 13 | 18 | 31 | NA | NA | NA |
2186 | 6 | Israel 1 | 1093 | M | Israel | Dahomey | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2187 | 6 | Israel 1 | 1094 | F | Israel | Israel | 1 | 245 | 1.100 | 19 | 24 | 43 | NA | NA | NA |
2188 | 6 | Israel 1 | 1094 | M | Israel | Israel | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2189 | 6 | Sweden 1 | 1095 | F | Sweden | Israel | 1 | 251 | 1.124 | 21 | 45 | 66 | NA | NA | NA |
2190 | 6 | Israel 1 | 1095 | M | Israel | Sweden | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2191 | 6 | Barcelona 1 | 1096 | F | Barcelona | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2192 | 6 | Sweden 1 | 1096 | M | Sweden | Barcelona | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2193 | 6 | Brownsville 1 | 1097 | F | Brownsville | Sweden | 1 | 275 | NA | 0 | 0 | 0 | NA | NA | NA |
2194 | 6 | Sweden 1 | 1097 | M | Sweden | Brownsville | 0 | NA | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2195 | 6 | Dahomey 1 | 1098 | F | Dahomey | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2196 | 6 | Sweden 1 | 1098 | M | Sweden | Dahomey | 1 | 253 | 1.071 | NA | NA | NA | 58 | 81 | 0.4172662 |
2197 | 6 | Israel 1 | 1099 | F | Israel | Sweden | 1 | NA | 1.114 | 9 | 14 | 23 | NA | NA | NA |
2198 | 6 | Sweden 1 | 1099 | M | Sweden | Israel | 1 | 278 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
2199 | 6 | Sweden 1 | 1100 | F | Sweden | Sweden | 0 | NA | NA | 0 | 0 | 0 | NA | NA | NA |
2200 | 6 | Sweden 1 | 1100 | M | Sweden | Sweden | 1 | 274 | NA | NA | NA | NA | 0 | 0 | 0.0000000 |
\(~\)
Columns represent:
Individual: the focal fly being tested.
Block: the experiment was completed in six separate blocks, identified here 1-6.
Strain: which of the 10 combinations of haplotype and duplicate strain was the individual from?
Dyad_ID: this identifies the pipette tip environment that the individual developed in.
Sex: the sex of the focal individual.
Focal_haplotype: the mtDNA haplotype carried by the focal individual.
Social_haplotype: the mtDNA haplotype carried by the focal individual’s competitor.
Survived: did the focal individual survive to adulthood (1) or die during larval development (0)?
Dev_time: the hours taken for the focal individual to progress from an egg to an adult. NA values indicate where individuals did not survive or development time could not be measured.
Wing_length: the length in mm of the focal individual’s right wing.
Maternal_female_offspring: the number of adult female offspring the focal mt-strain female produced over a two day period.
Maternal_male_offspring: the number of adult male offspring the focal mt-strain female produced over a two day period.
Maternal_total_offspring: the total number of adult offspring the focal mt-strain female produced over a two day period.
Paternal_focal_offspring: the number of red-eye phenotype offspring sired by a mt-strain male in the adult male fitness assay.
Paternal_bw_offspring: the number of brown-eye phenotype offspring sired by a bw competitor male in the adult male fitness assay.
Proportion focal: the proportion of offspring produced by the mt-strain male in the adult male fitness assay.
This section provides information on the operating system and R packages attached during the production of this document, to allow easier replication of the analysis.
sessionInfo() %>% pander
R version 3.6.2 (2019-12-12)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
locale: en_AU.UTF-8||en_AU.UTF-8||en_AU.UTF-8||C||en_AU.UTF-8||en_AU.UTF-8
attached base packages: grid, stats, graphics, grDevices, utils, datasets, methods and base
other attached packages: groupdata2(v.1.1.2), pander(v.0.6.3), kableExtra(v.1.1.0), ggbeeswarm(v.0.6.0), ggpubr(v.0.2.5), magrittr(v.1.5), emmeans(v.1.4.4), MuMIn(v.1.43.15), glmmTMB(v.1.0.1), lmerTest(v.3.1-1), lme4(v.1.1-21), Matrix(v.1.2-18), png(v.0.1-7), forcats(v.0.5.0), stringr(v.1.4.0), dplyr(v.0.8.5), purrr(v.0.3.3), readr(v.1.3.1), tidyr(v.1.0.2), tibble(v.2.1.3), ggplot2(v.3.3.0) and tidyverse(v.1.3.0)
loaded via a namespace (and not attached): nlme(v.3.1-144), fs(v.1.3.1), pbkrtest(v.0.4-7), lubridate(v.1.7.4), webshot(v.0.5.2), httr(v.1.4.1), numDeriv(v.2016.8-1.1), tools(v.3.6.2), TMB(v.1.7.16), backports(v.1.1.5), R6(v.2.4.1), vipor(v.0.4.5), DBI(v.1.1.0), colorspace(v.1.4-1), withr(v.2.1.2), tidyselect(v.1.0.0), compiler(v.3.6.2), cli(v.2.0.1), rvest(v.0.3.5), xml2(v.1.2.2), labeling(v.0.3), scales(v.1.1.0), mvtnorm(v.1.0-12), digest(v.0.6.23), minqa(v.1.2.4), rmarkdown(v.2.1), base64enc(v.0.1-3), pkgconfig(v.2.0.3), htmltools(v.0.4.0), highr(v.0.8), dbplyr(v.1.4.2), rlang(v.0.4.4), readxl(v.1.3.1), rstudioapi(v.0.11), farver(v.2.0.3), generics(v.0.0.2), jsonlite(v.1.6.1), Rcpp(v.1.0.3), munsell(v.0.5.0), fansi(v.0.4.1), lifecycle(v.0.1.0), stringi(v.1.4.5), yaml(v.2.2.1), MASS(v.7.3-51.5), plyr(v.1.8.5), parallel(v.3.6.2), crayon(v.1.3.4), lattice(v.0.20-38), cowplot(v.1.0.0), haven(v.2.2.0), splines(v.3.6.2), hms(v.0.5.3), knitr(v.1.28), pillar(v.1.4.3), boot(v.1.3-24), estimability(v.1.3), ggsignif(v.0.6.0), stats4(v.3.6.2), reprex(v.0.3.0), glue(v.1.3.1), evaluate(v.0.14), modelr(v.0.1.5), vctrs(v.0.2.2), nloptr(v.1.2.1), cellranger(v.1.1.0), gtable(v.0.3.0), assertthat(v.0.2.1), xfun(v.0.12), xtable(v.1.8-4), broom(v.0.5.4), coda(v.0.19-3), viridisLite(v.0.3.0) and beeswarm(v.0.2.3)
Brooks, Mollie E, Kasper Kristensen, Koen J van Benthem, Arni Magnusson, Casper W Berg, Anders Nielsen, Hans J Skaug, Martin Maechler, and Benjamin M Bolker. 2017. “Modeling Zero-Inflated Count Data with glmmTMB.” Journal Article. BioRxiv, 132753.
Symonds, Matthew R. E., and Adnan Moussalli. 2011. “A Brief Guide to Model Selection, Multimodel Inference and Model Averaging in Behavioural Ecology Using Akaike’s Information Criterion.” Journal Article. Behavioral Ecology and Sociobiology 65 (1): 13–21. https://doi.org/10.1007/s00265-010-1037-6.
Social haplotype effect sizes
\(~\)