Published in Proceedings of the Royal Society B

Article DOI: http://dx.doi.org/10.1098/rspb.2020.0575

Load all required packages

library(tidyverse) # data re-shaping, ggplot, stringr and more
library(png) # to load images
library(grid) # to plot images
library(lme4) # for the lmer and glmer mixed model functions
library(lmerTest) # Used to get p-values for lmer models using simulation. It over-writes lmer() with a new version
library(glmmTMB) # for zero-inflated or hurdle glms
library(MuMIn) # for model selection and averaging
library(emmeans) # for pairwise comparisons
library(ggpubr) # for the ggarrange function
library(ggbeeswarm) # violin plots with data points
library(kableExtra) # nice tables that can scroll
library(pander) # more nice tables
library(groupdata2) # for assigning rows in data-frames to groups

Supplementary methods

Schematic for replacement of the unknown Sxl-GFP nuclear background with the isogenic w1118 background

img <- readPNG("Crossing_scheme.png")
 grid.raster(img)

Figure S1: Crossing scheme used to create a standard homozygous w1118-GFP line. Males from this line were crossed with females carrying a specific mitochondrial haplotype, to create experimental mt-strains. These newly produced strains carried the mitochondrial haplotype of the female and were heterozygous for the Sxl-GFP construct. G1 = the first generation of the cross.

Table S1: Recipe for food medium used in our experiment. The provided quantities make ~ 1 litre of food.

tibble("Ingredients" = c("Soy flour", "Cornmeal", "Yeast", "Dextrose", "Agar", "Water", "Tegosept", "Acid mix (4 ml orthophosphoric acid, 41 ml propionic acid, 55 ml water to make 100 mls)"),
       "Quantity" = c("20 g", "73 g", "35 g", "75 g", "6 g", "1000 mls", "17 mls", "14 mls")) %>% 
  pander(split.cell = 20, split.table = Inf)
Ingredients Quantity
Soy flour 20 g
Cornmeal 73 g
Yeast 35 g
Dextrose 75 g
Agar 6 g
Water 1000 mls
Tegosept 17 mls
Acid mix (4 ml orthophosphoric acid, 41 ml propionic acid, 55 ml water to make 100 mls) 14 mls

Data analysis and supplementary results

Here we include all code used to run our analysis and create Figure 1 and 2, our rationale behind the modelling approaches, and tables S2-9.

Read in the data and create some helpful functions

# Read in data frame and add Dyad_ID column

all_data <- read.csv("mtDNA_larval_competition_data.csv") %>% 
  arrange(Individual) %>%
  group(n = 2, method = "greedy") %>% rename(Dyad_ID = .groups)

# helper function for saving large model objects and naming the file object.rds

save_it <- function(object){
  saveRDS(get(object), file = paste(object, ".rds", sep = ""))}

# Create a function for standard error

SE <- function(x) sd(x)/sqrt(length(x))

Data preparation for all responses

# Clean the dataset up for analysis

# Select the columns we're interested in and rename them

fitness_data <- dplyr::select(all_data, Individual, Block, Strain,  Dyad_ID, Sex, Focal.haplotype, Social.haplotype, Mortality, Development.time..hrs., Wing.size..mm., Female.offspring, Male.offspring, Total.female.assay, Total.red.all.vials, Total.bw.all.vials, Proportion.red.all.vials) %>% 
  
rename(Block = Block, Survived = Mortality, Focal_haplotype = Focal.haplotype, Social_haplotype = Social.haplotype, Dev_time = Development.time..hrs., Wing_length = Wing.size..mm., Maternal_female_offspring = Female.offspring, Maternal_male_offspring = Male.offspring, Maternal_total_offspring = Total.female.assay, Paternal_focal_offspring = Total.red.all.vials, Paternal_bw_offspring = Total.bw.all.vials, Proportion_focal = Proportion.red.all.vials)

# Define new levels for mortality to make renaming possible 

levels(fitness_data$Survived) <- c(levels(fitness_data$Survived), "NO")
levels(fitness_data$Survived) <- c(levels(fitness_data$Survived), "YES")

# Rename the mortality responses
# L means died as larva, P means died as pupae, N means did not die (i.e. eclosed as an adult)

fitness_data$Survived[fitness_data$Survived == 'L'] <- 'NO'
fitness_data$Survived[fitness_data$Survived == 'P'] <- 'NO'
fitness_data$Survived[fitness_data$Survived == 'N'] <- 'YES'

# Now that it makes sense change "YES" to 1 and "NO" to 0 so we can fit a binomial GLM.

levels(fitness_data$Survived) <- c(levels(fitness_data$Survived), "1")
levels(fitness_data$Survived) <- c(levels(fitness_data$Survived), "0")

fitness_data$Survived[fitness_data$Survived == "YES"] <- 1
fitness_data$Survived[fitness_data$Survived == "NO"] <- 0

# Make the factor numeric 

fitness_data$Survived <- as.numeric(as.character(fitness_data$Survived))


# Create specific datasets for each fitness trait

# Remove all rows that contain an NA value in the survival column. The NAs mean things like the GFP sorting did not work, or the vial was never set up due to a shortage of larvae. They are not meaningful data, and we remove them here.

survival <- fitness_data %>% filter(!is.na(Survived)) 
  
# Remove all rows that contain an NA value in the development time column. This instances represent flies where we failed to measure development time. 

larval_development <- fitness_data %>% filter(!is.na(Dev_time)) 

# Remove all rows that contain an NA value in the wing length column. Wing length was not measured in Blocks 1 and 2.

body_size <- fitness_data %>% filter(!is.na(Wing_length)) 

# Remove all rows that contain an NA value in the female reproductive output column (e.g. all the males), and where females did not survive to adulthood (coded as producing 0 offspring). 

female_reproductive_output <- fitness_data %>% filter(!is.na(Maternal_total_offspring), Survived == 1)


# Male adult fitness

# First remove females from the dataset.

Male_fitness <- fitness_data %>% filter(!is.na(Paternal_focal_offspring)) 

# Create an offspring counted column so that the data is correctly formatted for a binomial success-failure model.

Male_fitness$Offspring_counted <- Male_fitness$Paternal_focal_offspring + Male_fitness$Paternal_bw_offspring

# Now lets remove vials where the female produced 0 offspring (this includes trials where the male died in development), as we cannot determine paternity from these vials. The tidy up the dataframe by removing unneccessary columns

Male_fitness <- Male_fitness %>% filter(!(Offspring_counted == 0)) %>% 
  select(-Maternal_female_offspring, -Maternal_male_offspring, -Maternal_total_offspring) %>% 
  rename(Focal_male_offspring = Paternal_focal_offspring, bw_male_offspring = Paternal_bw_offspring)

Modelling approach

We analysed the data using linear and generalised linear mixed models in the lmer andglmmTMB packages for R.

Fixed effects

For the analysis of fitness traits expressed in both sexes (survival, development time and body size), we are interested in the effect of an individual’s focal mtDNA, the mtDNA of a social competitor and the effect of sex on fitness. To measure these potential effects each model contained the following fixed effects and the three-way interaction between these variables:

Focal haplotype: the mtDNA haplotype that an individual carries.

Social haplotype: the mtDNA haplotype carried by a social partner during larval development.

Sex: the sex of the focal individual. The social partner’s sex was always opposite to that of the focal individual.

Random effects

Duplicate strain: Each haplotype has been introgressed alongside the w1118 nuclear background in two independent duplicates, creating 10 total strains. Within each block we ran multiple replicates that were made up of flies from the first set of strains (i.e. Barcelona 1, Brownsville 1 etc.), while the other half used only flies from the second set of strains. This random effect accounts for any residual differences in the nuclear genome, epigenome, microbiome or vial environment that may have arisen between duplicates.

Block: accounts for differences in the response variable between experimental blocks (e.g. to variance in temperature or composition of the fly food). In our experiment a block contained multiple replicates and a replicate was made up of 25 different cells each housing a pair of larvae.

Dyad ID: accounts for differences in the quality of the larval environment between pairs of larvae. For example, the moisture content of the food varied between pipette tips, despite our best efforts to keep this variable constant.

Model evaluation

Each model was evaluated and ranked by AICc values using the dredge function, from the Mumin package. There was rarely a single model that was unequivocally the best fit to the data, so we conducted model averaging for the set of models where delta was < 6, as suggested by Symonds and Moussalli (2011). The present study is a planned experiment to measure the effect of mtDNA on fitness, so we derived model estimates from the conditional model averages.

\(~\)

Larval fitness measures

\(~\)

Egg to adult viability analysis


The model:

Survival ~ Focal_haplotype * Social_haplotype * Sex + (1|Strain) + (1|Block) + (1|Dyad_ID)

# Fit the global model

survival_model <- lme4::glmer(Survived ~ Focal_haplotype * Social_haplotype * Sex + (1|Strain) + (1|Block) + (1|Dyad_ID), data = survival, family = "binomial", control = glmerControl(optimizer = "Nelder_Mead", optCtrl=list(maxfun=100000)), na.action = na.fail)

Model evaluation

Table S2: Evaluation of the survivorship model. All possible models were evaluated from the global model that included a three-way interaction between focal haplotype, social haplotype and sex, as well as the random factors duplicate strain, block and dyad ID. As there was no clear top model, the final model was calculated via model averaging.

# Compare all possible combinations of models (from the global model)

if(file.exists("survival_dredge.rds")){ # If already done, just load the results
  survival_dredge <- readRDS("survival_dredge.rds")
} else {survival_dredge <- dredge(survival_model) # If not already done, run all the models and save the results
lapply(c("survival_dredge"), save_it)
}


survival_table <- subset(survival_dredge, delta < 6, recalc.weights = FALSE) %>% as.data.frame()

names(survival_table)[names(survival_table) == "(Intercept)"] <- "Intercept"
names(survival_table)[names(survival_table) == "Focal_haplotype"] <- "Focal haplotype"
names(survival_table)[names(survival_table) == "Sex"] <- "Sex"
names(survival_table)[names(survival_table) == "Social_haplotype"] <- "Social haplotype"
names(survival_table)[names(survival_table) == "Focal_haplotype:Sex"] <- "Focal haplotype x Sex"
names(survival_table)[names(survival_table) == "Focal_haplotype:Social_haplotype"] <- "Focal haplotype x Social haplotype"
names(survival_table)[names(survival_table) == "Sex:Social_haplotype"] <- "Social haplotype x Sex"
names(survival_table)[names(survival_table) == "Focal_haplotype:Sex:Social_haplotype"] <- "Focal haplotype x Social haplotype x Sex"
names(survival_table)[names(survival_table) == "df"] <- "Degrees of freedom"
names(survival_table)[names(survival_table) == "logLik"] <- "Log likelihood"
names(survival_table)[names(survival_table) == "AICc"] <- "AICc"
names(survival_table)[names(survival_table) == "delta"] <- "Delta"
names(survival_table)[names(survival_table) == "weight"] <- "Weight"

pander(survival_table, split.cell = 40, split.table = Inf)
  Intercept Focal haplotype Sex Social haplotype Focal haplotype x Sex Focal haplotype x Social haplotype Social haplotype x Sex Focal haplotype x Social haplotype x Sex Degrees of freedom Log likelihood AICc Delta Weight
1 -0.225 NA NA NA NA NA NA NA 4 -1304 2617 0 0.4529
3 -0.2715 NA + NA NA NA NA NA 5 -1304 2618 1.066 0.2658
2 -0.1177 + NA NA NA NA NA NA 8 -1302 2619 2.469 0.1318
4 -0.1639 + + NA NA NA NA NA 9 -1301 2621 3.557 0.0765
5 -0.2554 NA NA + NA NA NA NA 8 -1303 2622 5.416 0.0302

\(~\)

Relative variable importance for each of the predictors and interactions in the survival model set. RVI can be interpreted as the likelihood the model term is present in the best performing model from the initial full set of possible models.

# present relative variable importance in a table 

sw(survival_dredge) %>%
  as.data.frame() %>%
  pander(split.cell = 40, split.table = Inf, round = 3, col.names = "RVI")
  RVI
Sex 0.377
Focal_haplotype 0.231
Social_haplotype 0.065
Focal_haplotype:Sex 0.009
Sex:Social_haplotype 0.004
Focal_haplotype:Social_haplotype 0
Focal_haplotype:Sex:Social_haplotype 0

\(~\)

Model averaging

Table S3: Effects of mtDNA and sex on egg-to-adult viability. Conditional estimates from model averaging the full generalised linear mixed model are shown. Models were included in the averaging subset if delta < 6. Bold rows indicate significant effects.

# Model average

# We need to create the top_survival_models object and average from that so that we can get mean estimates successfully using predict(), fitted() or eemeans()

top_survival_models <- get.models(survival_dredge, subset = delta < 6)

survival_avgm <- model.avg(top_survival_models)

# average the models with delta < 6

survival_CIs <- confint(survival_avgm) %>% as.data.frame()

survival_estimate <- coefTable(survival_avgm) %>% as.data.frame()

survival_p_values <- summary(survival_avgm)$coefmat.subset[, 5] %>% as.data.frame() %>% rename(p = ".")

survival_model_avg <- data.frame(survival_estimate, survival_CIs, survival_p_values) %>% select(Estimate, Std..Error,  X2.5.., X97.5.., p)

row.names(survival_model_avg) <- c("Intercept", "Sex: Male", "Focal haplotype: Brownsville", "Focal haplotype: Dahomey", "Focal haplotype: Israel", "Focal haplotype: Sweden", "Social haplotype: Brownsville", "Social haplotype: Dahomey", "Social haplotype: Israel", "Social haplotype: Sweden")

names(survival_model_avg)[names(survival_model_avg) == "Estimate"] <- "Conditional average estimate"
names(survival_model_avg)[names(survival_model_avg) == "Std..Error"] <- "Standard Error"
names(survival_model_avg)[names(survival_model_avg) == "X2.5.."] <- "2.5% Interval"
names(survival_model_avg)[names(survival_model_avg) == "X97.5.."] <- "97.5% Interval"

pander(survival_model_avg, split.cell = 40, split.table = Inf, round = 3)
  Conditional average estimate Standard Error 2.5% Interval 97.5% Interval p
Intercept -0.219 0.309 -0.825 0.387 0.478
Sex: Male 0.093 0.095 -0.094 0.279 0.331
Focal haplotype: Brownsville -0.084 0.151 -0.38 0.213 0.58
Focal haplotype: Dahomey 0.08 0.151 -0.216 0.376 0.597
Focal haplotype: Israel -0.261 0.153 -0.561 0.039 0.088
Focal haplotype: Sweden -0.214 0.154 -0.515 0.088 0.164
Social haplotype: Brownsville -0.073 0.152 -0.371 0.224 0.628
Social haplotype: Dahomey 0.039 0.152 -0.258 0.336 0.797
Social haplotype: Israel 0.167 0.152 -0.13 0.464 0.27
Social haplotype: Sweden 0.021 0.153 -0.279 0.321 0.891
# The full average provides a parameter average across all models considered, including ones where the parameter coefficient is set to 0. The conditional average reports coefficents for only the models where the parameter is included.

Comparison of focal and social haplotype effect sizes

While our experiment was not designed to calculate estimates of conventional selection and social selection, we present the standardised effect size for the difference in mean fitness between haplotype pairs, for direct and indirect fitness effects. Our aim is to illustrate that the size of the direct and indirect effects on viability are of similar magnitudes.

Focal haplotype effect sizes
# Fit a simplified version of the mode without interactions that can be used with the emmeans() function. This model is reasonable as we detected no evidence for an interaction between any of our fixed effects in the above analysis.

survival_emmeans <- glmer(Survived ~ Focal_haplotype + Social_haplotype + Sex + (1|Strain) + (1|Block) + (1|Dyad_ID), data = survival, family = "binomial", control = glmerControl(optimizer = "Nelder_Mead", optCtrl=list(maxfun=100000)), na.action = na.fail)

# Now create the pairwise comparisons for focal haplotype

pairs(emmeans(survival_emmeans, ~ Focal_haplotype, type = "response")) %>% 
  as_tibble() %>% 
  pander(split.cell = 40, split.table = Inf)
contrast odds.ratio SE df z.ratio p.value
Barcelona / Brownsville 1.09 0.1646 Inf 0.5692 0.9795
Barcelona / Dahomey 0.9206 0.1391 Inf -0.5477 0.9823
Barcelona / Israel 1.29 0.1969 Inf 1.668 0.4539
Barcelona / Sweden 1.235 0.1895 Inf 1.373 0.6451
Brownsville / Dahomey 0.8447 0.1281 Inf -1.112 0.8001
Brownsville / Israel 1.184 0.1812 Inf 1.102 0.8058
Brownsville / Sweden 1.133 0.1745 Inf 0.8104 0.9275
Dahomey / Israel 1.401 0.2147 Inf 2.202 0.179
Dahomey / Sweden 1.341 0.2068 Inf 1.904 0.3151
Israel / Sweden 0.9571 0.1487 Inf -0.282 0.9986
Social haplotype effect sizes
# Now for social haplotype

pairs(emmeans(survival_emmeans, ~ Social_haplotype, type = "response")) %>% 
  as_tibble() %>% 
  pander(split.cell = 40, split.table = Inf)
contrast odds.ratio SE df z.ratio p.value
Barcelona / Brownsville 1.077 0.1637 Inf 0.4863 0.9886
Barcelona / Dahomey 0.9589 0.1459 Inf -0.2758 0.9987
Barcelona / Israel 0.8495 0.1291 Inf -1.073 0.8203
Barcelona / Sweden 0.9798 0.1503 Inf -0.1329 0.9999
Brownsville / Dahomey 0.8906 0.136 Inf -0.7589 0.9422
Brownsville / Israel 0.7889 0.1204 Inf -1.553 0.5276
Brownsville / Sweden 0.91 0.1401 Inf -0.6126 0.9731
Dahomey / Israel 0.8859 0.135 Inf -0.7948 0.9322
Dahomey / Sweden 1.022 0.1573 Inf 0.14 0.9999
Israel / Sweden 1.153 0.1773 Inf 0.9283 0.886

\(~\)

Development time analysis


The model:

Dev_time ~ Focal_haplotype * Social_haplotype * Sex + (1|Strain) + (1|Block) + (1|Dyad_ID)

# Fit the linear model

dev_model <- lmer(Dev_time ~ Focal_haplotype * Social_haplotype * Sex + (1|Strain) + (1|Block) + (1|Dyad_ID), larval_development, na.action = na.fail, REML = FALSE)

Model evaluation

Table S4: Evaluation of the development time model. All possible models were evaluated from the global model that included a three-way interaction between focal haplotype, social haplotype and sex as well as the random factors duplicate strain, block and dyad ID. As there was no clear top model, the final model was calculated via model averaging.

# Use dredge to compare all possible models derived from the global model

Dev_dredge <- dredge(dev_model)

development_table <- subset(Dev_dredge, delta < 6, recalc.weights = FALSE)  %>% as.data.frame()

names(development_table)[names(development_table) == "(Intercept)"] <- "Intercept"
names(development_table)[names(development_table) == "Focal_haplotype"] <- "Focal haplotype"
names(development_table)[names(development_table) == "Social_haplotype"] <- "Social haplotype"
names(development_table)[names(development_table) == "Focal_haplotype:Sex"] <- "Focal haplotype x Sex"
names(development_table)[names(development_table) == "Focal_haplotype:Social_haplotype"] <- "Focal haplotype x Social haplotype"
names(development_table)[names(development_table) == "Sex:Social_haplotype"] <- "Social haplotype x Sex"
names(development_table)[names(development_table) == "Focal_haplotype:Sex:Social_haplotype"] <- "Focal haplotype x Social haplotype x Sex"
names(development_table)[names(development_table) == "df"] <- "Degrees of freedom"
names(development_table)[names(development_table) == "logLik"] <- "Log likelihood"
names(development_table)[names(development_table) == "AICc"] <- "AICc"
names(development_table)[names(development_table) == "delta"] <- "Delta"
names(development_table)[names(development_table) == "weight"] <- "Weight"

pander(development_table, split.cell = 40, split.table = Inf)
  Intercept Focal haplotype Sex Social haplotype Focal haplotype x Sex Focal haplotype x Social haplotype Social haplotype x Sex Focal haplotype x Social haplotype x Sex Degrees of freedom Log likelihood AICc Delta Weight
3 260.5 NA + NA NA NA NA NA 6 -2998 6008 0 0.7286
1 261.6 NA NA NA NA NA NA NA 5 -3001 6012 3.858 0.1059
4 261.9 + + NA NA NA NA NA 10 -2996 6012 3.98 0.09962
7 260.1 NA + + NA NA NA NA 10 -2997 6014 5.995 0.03637

\(~\)

Relative variable importance for each of the predictors and interactions in the development time model set.

# present relative variable importance in a table 

sw(Dev_dredge) %>%
  as.data.frame() %>%
  pander(split.cell = 40, split.table = Inf, round = 3, col.names = "RVI")
  RVI
Sex 0.874
Focal_haplotype 0.121
Social_haplotype 0.051
Focal_haplotype:Sex 0.003
Sex:Social_haplotype 0.001
Focal_haplotype:Social_haplotype 0
Focal_haplotype:Sex:Social_haplotype 0

\(~\)

Model averaging

Table S5: Effects of mtDNA and sex on egg-to-adult development time. Conditional estimates from model averaging the full generalised linear mixed model are shown. Models were included in the averaging subset if delta < 6. Bold rows indicate significant effects.

# Model averaging

Dev_time_avg <- (model.avg(Dev_dredge, subset = delta < 6))

Dev_CIs <- confint(Dev_time_avg) %>% as.data.frame()

Dev_estimate <- coefTable(Dev_time_avg) %>% as.data.frame()

Dev_p_values <- summary(Dev_time_avg)$coefmat.subset[, 5] %>% as.data.frame() %>% rename(p = ".")

Dev_model_avg <- data.frame(Dev_estimate, Dev_CIs, Dev_p_values) %>% select(Estimate, Std..Error,  X2.5.., X97.5.., p)

row.names(Dev_model_avg) <- c("Intercept", "Sex: Male", "Focal haplotype: Brownsville", "Focal haplotype: Dahomey", "Focal haplotype: Israel", "Focal haplotype: Sweden", "Social haplotype: Brownsville", "Social haplotype: Dahomey", "Social haplotype: Israel", "Social haplotype: Sweden")

names(Dev_model_avg)[names(Dev_model_avg) == "Estimate"] <- "Conditional average estimate"
names(Dev_model_avg)[names(Dev_model_avg) == "Std..Error"] <- "Standard Error"
names(Dev_model_avg)[names(Dev_model_avg) == "X2.5.."] <- "2.5% Interval"
names(Dev_model_avg)[names(Dev_model_avg) == "X97.5.."] <- "97.5% Interval"


pander(Dev_model_avg, split.cell = 40, split.table = Inf, emphasize.strong.rows = 2, round = 3)
  Conditional average estimate Standard Error 2.5% Interval 97.5% Interval p
Intercept 260.8 2.353 256.2 265.4 0
Sex: Male 2.173 0.891 0.427 3.919 0.015
Focal haplotype: Brownsville -1.943 1.45 -4.784 0.899 0.18
Focal haplotype: Dahomey -2.688 1.417 -5.466 0.09 0.058
Focal haplotype: Israel -1.914 1.503 -4.86 1.031 0.203
Focal haplotype: Sweden -0.063 1.512 -3.025 2.9 0.967
Social haplotype: Brownsville 1.007 1.522 -1.977 3.991 0.508
Social haplotype: Dahomey -0.574 1.467 -3.45 2.302 0.696
Social haplotype: Israel 0.673 1.443 -2.156 3.502 0.641
Social haplotype: Sweden 1.376 1.479 -1.523 4.275 0.352

Comparison of focal and social haplotype effect sizes

While our experiment was not designed to calculate estimates of conventional selection and social selection, we present the standardised effect size for the difference in mean fitness between haplotype pairs, for direct and indirect fitness effects. Our aim is to illustrate that the size of the direct and indirect effects on development time are of similar magnitudes.

Focal haplotype effect sizes
# Fit a simplified version of the mode without interactions that can be used with the emmeans() function. This model is reasonable as we detected no evidence for an interaction between any of our fixed effects in the above analysis.

dev_time_emmeans <- lmer(Dev_time ~ Focal_haplotype + Social_haplotype + Sex + (1|Strain) + (1|Block) + (1|Dyad_ID), larval_development, na.action = na.fail, REML = FALSE)

# Now create the pairwise comparisons for focal haplotype

pairs(emmeans(dev_time_emmeans, ~ Focal_haplotype, type = "response")) %>% 
  as_tibble() %>% 
  pander(split.cell = 40, split.table = Inf)
contrast estimate SE df t.ratio p.value
Barcelona - Brownsville 1.802 2.047 14.99 0.8804 0.8997
Barcelona - Dahomey 2.717 2.032 14.82 1.337 0.6737
Barcelona - Israel 1.861 2.069 14.6 0.8993 0.8926
Barcelona - Sweden -0.2396 2.124 15.62 -0.1128 1
Brownsville - Dahomey 0.9151 2.04 15.13 0.4486 0.9908
Brownsville - Israel 0.05866 2.086 14.93 0.02812 1
Brownsville - Sweden -2.042 2.134 15.88 -0.9567 0.8702
Dahomey - Israel -0.8565 2.064 14.6 -0.415 0.9931
Dahomey - Sweden -2.957 2.111 15.53 -1.401 0.636
Israel - Sweden -2.101 2.157 15.42 -0.974 0.8628
Social haplotype effect sizes
# Now for social haplotype

pairs(emmeans(dev_time_emmeans, ~ Social_haplotype, type = "response")) %>% 
  as_tibble() %>% 
  pander(split.cell = 40, split.table = Inf)
contrast estimate SE df t.ratio p.value
Barcelona - Brownsville -0.942 1.538 746.4 -0.6126 0.9731
Barcelona - Dahomey 0.7562 1.48 746.9 0.5109 0.9863
Barcelona - Israel -0.5576 1.452 742.6 -0.3841 0.9954
Barcelona - Sweden -1.404 1.498 752.5 -0.9371 0.8824
Brownsville - Dahomey 1.698 1.555 745.2 1.092 0.8107
Brownsville - Israel 0.3843 1.525 744.9 0.252 0.9991
Brownsville - Sweden -0.4619 1.568 749.2 -0.2945 0.9984
Dahomey - Israel -1.314 1.472 748.5 -0.8924 0.8997
Dahomey - Sweden -2.16 1.508 744.7 -1.432 0.6069
Israel - Sweden -0.8462 1.493 753.9 -0.5669 0.9798

\(~\)

Adult fitness measures

\(~\)

Body size analysis


We use wing length as a proxy for adult body size.

The model:

Wing_length ~ Focal_haplotype * Social_haplotype * Sex + (1|Strain) + (1|Block) + (1|Dyad_ID)

body_size_model <- lmer(Wing_length ~ Focal_haplotype * Social_haplotype * Sex + (1|Strain) + (1|Block) + (1|Dyad_ID), body_size, na.action = na.fail, REML = FALSE)

Model evaluation

Table S6: Evaluation of the wing length model. All possible models were evaluated from the global model that included a three-way interaction between focal haplotype, social haplotype and sex, as well as the random factors duplicate strain, block and dyad ID. There was a clear top model; coefficients are displayed in Table S7.

# Compare all possible combinations of models (from the global model)

body_size_dredge <- dredge(body_size_model)

size_table <- subset(body_size_dredge, delta < 6, recalc.weights = FALSE) %>% as.data.frame()


names(size_table)[names(size_table) == "(Intercept)"] <- "Intercept"
names(size_table)[names(size_table) == "Focal_haplotype"] <- "Focal haplotype"
names(size_table)[names(size_table) == "Sex"] <- "Sex"
names(size_table)[names(size_table) == "Social_haplotype"] <- "Social haplotype"
names(size_table)[names(size_table) == "Focal_haplotype:Sex"] <- "Focal haplotype x Sex"
names(size_table)[names(size_table) == "Focal_haplotype:Social_haplotype"] <- "Focal haplotype x Social haplotype"
names(size_table)[names(size_table) == "Sex:Social_haplotype"] <- "Social haplotype x Sex"
names(size_table)[names(size_table) == "Focal_haplotype:Sex:Social_haplotype"] <- "Focal haplotype x Social haplotype x Sex"
names(size_table)[names(size_table) == "df"] <- "Degrees of freedom"
names(size_table)[names(size_table) == "logLik"] <- "Log likelihood"
names(size_table)[names(size_table) == "AICc"] <- "AICc"
names(size_table)[names(size_table) == "delta"] <- "Delta"
names(size_table)[names(size_table) == "weight"] <- "Weight"

pander(size_table, split.cell = 40, split.table = Inf)
  Intercept Focal haplotype Sex Social haplotype Focal haplotype x Sex Focal haplotype x Social haplotype Social haplotype x Sex Focal haplotype x Social haplotype x Sex Degrees of freedom Log likelihood AICc Delta Weight
3 1.063 NA + NA NA NA NA NA 6 440.6 -869 0 0.9201

\(~\)

Relative variable importance for each of the predictors and interactions in the wing length model set.

# present relative variable importance in a table 

sw(body_size_dredge) %>%
  as.data.frame() %>%
  pander(split.cell = 40, split.table = Inf, round = 3, col.names = "RVI")
  RVI
Sex 1
Social_haplotype 0.044
Focal_haplotype 0.038
Sex:Social_haplotype 0.004
Focal_haplotype:Sex 0.002
Focal_haplotype:Social_haplotype 0
Focal_haplotype:Sex:Social_haplotype 0

\(~\)

Best fitting model

One model was retained in the delta < 6 subset; model averaging is not required.

Table S7: Effects of mtDNA and sex on wing length. Results from the best fitting generalised linear mixed model are shown. Bold rows indicate significant effects.

# Fit the top model

body_size_model_final <- lmer(Wing_length ~ Sex + (1|Strain) + (1|Block) + (1|Dyad_ID), body_size, na.action = na.fail, REML = FALSE)

Size_CIs <- confint(body_size_model_final) %>%
  as.data.frame() %>% 
  slice(5:6)

Size_estimate <- coefTable(body_size_model_final) %>% as.data.frame()

Size_p_values <- summary(body_size_model_final)$coefficients[, 5] %>% as.data.frame() %>% rename(p = ".")

Size_model_avg <- data.frame(Size_estimate, Size_CIs, Size_p_values) %>% select(Estimate, Std..Error,  X2.5.., X97.5.., p)

row.names(Size_model_avg) <- c("Intercept", "Sex: Male")

names(Size_model_avg)[names(Size_model_avg) == "Estimate"] <- "Conditional average estimate"
names(Size_model_avg)[names(Size_model_avg) == "Std..Error"] <- "Standard Error"
names(Size_model_avg)[names(Size_model_avg) == "X2.5.."] <- "2.5% Interval"
names(Size_model_avg)[names(Size_model_avg) == "X97.5.."] <- "97.5% Interval"

pander(Size_model_avg, split.cell = 40, split.table = Inf, emphasize.strong.rows = (2), round = 3)
  Conditional average estimate Standard Error 2.5% Interval 97.5% Interval p
Intercept 1.063 0.015 1.024 1.1 0
Sex: Male -0.086 0.007 -0.1 -0.072 0

\(~\)

Comparison of focal and social haplotype effect sizes

While our experiment was not designed to calculate estimates of conventional selection and social selection, we present the standardised effect size for the difference in mean fitness between haplotype pairs, for direct and indirect fitness effects. Our aim is to illustrate that the size of the direct and indirect effects on body size are minimal and of similar magnitudes.

Focal haplotype effect sizes
# Fit a simplified version of the mode without interactions that can be used with the emmeans() function. This model is reasonable as we detected no evidence for an interaction between any of our fixed effects in the above analysis.

size_emmeans <- lmer(Wing_length ~ Focal_haplotype + Social_haplotype + Sex + (1|Strain) + (1|Block) + (1|Dyad_ID), body_size, na.action = na.fail, REML = FALSE)

# Now create the pairwise comparisons for focal haplotype

pairs(emmeans(size_emmeans, ~ Focal_haplotype, type = "response")) %>% 
  as_tibble() %>% 
  pander(split.cell = 40, split.table = Inf)
contrast estimate SE df t.ratio p.value
Barcelona - Brownsville 0.002352 0.01389 2.719 0.1693 0.9997
Barcelona - Dahomey -0.008054 0.01357 2.17 -0.5934 0.9645
Barcelona - Israel -0.005097 0.0138 2.547 -0.3694 0.9936
Barcelona - Sweden 0.006442 0.01434 3.083 0.4492 0.9876
Brownsville - Dahomey -0.01041 0.01381 2.434 -0.7535 0.9269
Brownsville - Israel -0.007449 0.01377 2.818 -0.5411 0.9756
Brownsville - Sweden 0.00409 0.01428 3.191 0.2864 0.9977
Dahomey - Israel 0.002957 0.01353 2.217 0.2186 0.9991
Dahomey - Sweden 0.0145 0.01387 2.682 1.045 0.8238
Israel - Sweden 0.01154 0.01412 2.992 0.817 0.9098
Social haplotype effect sizes
# Now for social haplotype

pairs(emmeans(size_emmeans, ~ Social_haplotype, type = "response")) %>% 
  as_tibble() %>% 
  pander(split.cell = 40, split.table = Inf)
contrast estimate SE df t.ratio p.value
Barcelona - Brownsville 0.009373 0.01331 409.4 0.7043 0.9555
Barcelona - Dahomey 0.01224 0.01304 403.8 0.939 0.8815
Barcelona - Israel -0.001812 0.01253 405.3 -0.1446 0.9999
Barcelona - Sweden 0.007855 0.0133 409.5 0.5904 0.9765
Brownsville - Dahomey 0.002868 0.01314 407.3 0.2183 0.9995
Brownsville - Israel -0.01118 0.01258 407.6 -0.8891 0.9009
Brownsville - Sweden -0.001517 0.01323 410.5 -0.1147 1
Dahomey - Israel -0.01405 0.01233 404.2 -1.14 0.7854
Dahomey - Sweden -0.004385 0.01301 409.6 -0.337 0.9972
Israel - Sweden 0.009667 0.01266 410.4 0.7634 0.9409

\(~\)

Female reproductive output


To effectively accommodate zero-inflation, we modelled female offspring production using the glmmTMB package (Brooks et al. 2017). This package allows us to fit hurdle models and zero-inflated models.

We analysed the number of offspring produced by females using a hurdle model with negative binomial errors. This approach allowed us to answer two questions: (1) did mtDNA affect the incidence of failing to produce any offspring? and (2) for females that produced at least one offspring, was the number of offspring produced affected by mtDNA?

The model:

Maternal_total_offspring ~ Focal_haplotype * Social_haplotype + (1|Strain) + (1|Block)

female_hurdle_model <- glmmTMB(Maternal_total_offspring ~ Social_haplotype * Focal_haplotype + (1|Strain) + (1|Block), data = female_reproductive_output, family = list(family="truncated_nbinom1",link="log"), ziformula = ~., na.action = na.fail, REML = FALSE)

Model evaluation

Table S8: Evaluation of the female reproductive output model. All possible models were evaluated from the global model that included an interaction between focal haplotype and social haplotype and the random factors strain and block. As there was no clear top model, the final model was calculated via model averaging. The zero-inflated results relate to whether a female produced any offspring, while the conditional results relate to the number of offspring produced by fertile females.

# Compare all possible combinations of models (from the global model)

if(file.exists("female_dredge.rds")){ # If already done, just load the results
  female_dredge <- readRDS("female_dredge.rds")
} else {female_dredge <- dredge(female_hurdle_model)                  # If not already done, run all the models and save the results
lapply(c("female_dredge"), save_it)
}


female_table <- subset(female_dredge, delta < 6, recalc.weights = FALSE) %>% as.data.frame()

names(female_table)[names(female_table) == "cond((Int))"] <- "Conditional intercept"
names(female_table)[names(female_table) == "zi((Int))"] <- "Zero-inflated intercept"
names(female_table)[names(female_table) == "disp((Int))"] <- "Dispersion factor intercept"
names(female_table)[names(female_table) == "cond(Focal_haplotype)"] <- "Conditional (Focal haplotype)"
names(female_table)[names(female_table) == "cond(Social_haplotype)"] <- "Conditional (Social haplotype)"
names(female_table)[names(female_table) == "cond(Focal_haplotype:Social_haplotype)"] <- "Conditional (Focal haplotype x Social haplotype)"
names(female_table)[names(female_table) == "zi(Focal_haplotype)"] <- "Zero-inflated (Focal haplotype)"
names(female_table)[names(female_table) == "zi(Social_haplotype)"] <- "Zero-inflated (Social haplotype)"
names(female_table)[names(female_table) == "zi(Focal_haplotype:Social_haplotype)"] <- "Zero-inflated (Focal haplotype x Social haplotype)"
names(female_table)[names(female_table) == "df"] <- "Degrees of freedom"
names(female_table)[names(female_table) == "logLik"] <- "Log likelihood"
names(female_table)[names(female_table) == "AICc"] <- "AICc"
names(female_table)[names(female_table) == "delta"] <- "Delta"
names(female_table)[names(female_table) == "weight"] <- "Weight"

pander(female_table, split.cell = 40, split.table = Inf)
  Conditional intercept Zero-inflated intercept Dispersion factor intercept Conditional (Focal haplotype) Conditional (Social haplotype) Conditional (Focal haplotype x Social haplotype) Zero-inflated (Focal haplotype) Zero-inflated (Social haplotype) Zero-inflated (Focal haplotype x Social haplotype) Degrees of freedom Log likelihood AICc Delta Weight
18 3.932 -1.245 + + NA NA NA + NA 15 -1546 3124 0 0.5844
17 3.839 -1.245 + NA NA NA NA + NA 11 -1552 3126 2.057 0.209
2 3.932 -0.783 + + NA NA NA NA NA 11 -1553 3128 4.256 0.06959
26 3.932 -1.156 + + NA NA + + NA 19 -1545 3129 4.796 0.05313

\(~\)

Relative variable importance for each of the predictors and interactions in the female reproductive output model set.

# present relative variable importance in a table 

sw(female_dredge) %>%
  as.data.frame() %>%
  pander(split.cell = 40, split.table = Inf, round = 3, col.names = "RVI")
  RVI
zi(Social_haplotype) 0.895
cond(Focal_haplotype) 0.736
zi(Focal_haplotype) 0.086
cond(Social_haplotype) 0.031
zi(Focal_haplotype:Social_haplotype) 0
cond(Focal_haplotype:Social_haplotype) 0

\(~\)

Model averaging

Zi (zero-hurdle requirement) and conditional (after hurdle) model coefficients, standard error and 95% confidence limits listed in Table 1 are shown for the female offspring production averaged model. Bold rows indicate significant effects.

# We need to create the top_survival_models object and average from that so that we can get mean estimates successfully using predict()

top_female_models <- get.models(female_dredge, subset = delta < 6)

female_avgm <- model.avg(top_female_models)

# extract useful info

Female_CIs <- confint(female_avgm) %>% as.data.frame()

Female_estimate <- coefTable(female_avgm) %>% as.data.frame()

Female_p_values <- summary(female_avgm)$coefmat.subset[, 5] %>% as.data.frame() %>% rename(p = ".")

Female_model_avg <- data.frame(Female_estimate, Female_CIs, Female_p_values) %>% select(Estimate, Std..Error,  X2.5.., X97.5.., p)

row.names(Female_model_avg) <- c("Conditional intercept", "Conditional focal haplotype: Brownsville", "Conditional focal haplotype: Dahomey", "Conditional focal haplotype: Israel", "Conditional focal haplotype: Sweden", "Zi intercept", "Zi social haplotype: Brownsville", "Zi social haplotype: Dahomey", "Zi social haplotype: Israel", "Zi social haplotype: Sweden", "Zi focal haplotype: Brownsville", "Zi focal haplotype: Dahomey", "Zi focal haplotype: Israel", "Zi focal haplotype: Sweden")


names(Female_model_avg)[names(Female_model_avg) == "Estimate"] <- "Conditional average estimate"
names(Female_model_avg)[names(Female_model_avg) == "Std..Error"] <- "Standard Error"
names(Female_model_avg)[names(Female_model_avg) == "X2.5.."] <- "2.5% Interval"
names(Female_model_avg)[names(Female_model_avg) == "X97.5.."] <- "97.5% Interval"

Female_model_avg %>%
  pander(split.cell = 40, split.table = Inf, emphasize.strong.rows = c(2, 5, 9), round = 3)
  Conditional average estimate Standard Error 2.5% Interval 97.5% Interval p
Conditional intercept 3.911 0.076 3.762 4.059 0
Conditional focal haplotype: Brownsville -0.191 0.08 -0.347 -0.035 0.016
Conditional focal haplotype: Dahomey -0.084 0.076 -0.234 0.065 0.27
Conditional focal haplotype: Israel -0.005 0.081 -0.163 0.152 0.947
Conditional focal haplotype: Sweden -0.213 0.083 -0.377 -0.049 0.011
Zi intercept -1.205 0.285 -1.764 -0.645 0
Zi social haplotype: Brownsville 0.552 0.359 -0.151 1.255 0.124
Zi social haplotype: Dahomey 0.188 0.353 -0.504 0.88 0.595
Zi social haplotype: Israel 1.051 0.335 0.395 1.707 0.002
Zi social haplotype: Sweden 0.371 0.361 -0.337 1.079 0.305
Zi focal haplotype: Brownsville 0.003 0.325 -0.635 0.641 0.993
Zi focal haplotype: Dahomey -0.28 0.333 -0.933 0.373 0.401
Zi focal haplotype: Israel 0.214 0.327 -0.427 0.855 0.513
Zi focal haplotype: Sweden -0.396 0.364 -1.109 0.318 0.277

\(~\)

Comparison of focal and social haplotype effect sizes

While our experiment was not designed to calculate estimates of conventional selection and social selection, we present the standardised effect size for the difference in mean fitness between haplotype pairs, for direct and indirect fitness effects. Our aim is to illustrate that the size of the indirect effects on female reproductive output are of similar magnitudes to, or exceed the size of, focal haplotype effects.

Did the female produce offspring? (Hurdle component of the model)
Focal haplotype effect sizes
# Fit a simplified version of the model without interactions that can be used with the emmeans() function. For the hurdle component of the model we simply fit a binary model with the response variable: did the female produce >= 1 offspring. This produces slightly different estimates from the full hurdle model but the effects sizes are extremely similar.

female_reproductive_output_zi <- female_reproductive_output %>% 
  mutate(produced_offspring = if_else(Maternal_total_offspring == 0, 0, 1))

female_emmeans_h <- glmmTMB(produced_offspring ~ Social_haplotype + Focal_haplotype + (1|Strain) + (1|Block), data = female_reproductive_output_zi, family = binomial, na.action = na.fail, REML = FALSE)

# Now create the pairwise comparisons for focal haplotype

pairs(emmeans(female_emmeans_h, ~ Focal_haplotype, type = "response")) %>% 
  as_tibble() %>% 
  pander(split.cell = 40, split.table = Inf)
contrast odds.ratio SE df t.ratio p.value
Barcelona / Brownsville 1.003 0.3253 413 0.008458 1
Barcelona / Dahomey 0.7557 0.2511 413 -0.843 0.917
Barcelona / Israel 1.238 0.4039 413 0.6557 0.9655
Barcelona / Sweden 0.6733 0.2443 413 -1.09 0.8117
Brownsville / Dahomey 0.7536 0.2499 413 -0.8531 0.9136
Brownsville / Israel 1.235 0.4014 413 0.6495 0.9667
Brownsville / Sweden 0.6715 0.243 413 -1.1 0.8063
Dahomey / Israel 1.639 0.5432 413 1.49 0.5695
Dahomey / Sweden 0.891 0.3269 413 -0.3146 0.9979
Israel / Sweden 0.5437 0.1961 413 -1.69 0.4415
Social haplotype effect sizes
# Now for social haplotype

pairs(emmeans(female_emmeans_h, ~ Social_haplotype, type = "response")) %>% 
  as_tibble() %>% 
  pander(split.cell = 40, split.table = Inf)
contrast odds.ratio SE df t.ratio p.value
Barcelona / Brownsville 1.726 0.62 413 1.519 0.5506
Barcelona / Dahomey 1.186 0.4195 413 0.4824 0.9889
Barcelona / Israel 2.848 0.956 413 3.119 0.01657
Barcelona / Sweden 1.394 0.5056 413 0.9153 0.8909
Brownsville / Dahomey 0.6872 0.2355 413 -1.095 0.8093
Brownsville / Israel 1.65 0.535 413 1.545 0.5336
Brownsville / Sweden 0.8076 0.2844 413 -0.6067 0.974
Dahomey / Israel 2.401 0.7643 413 2.753 0.04831
Dahomey / Sweden 1.175 0.407 413 0.466 0.9903
Israel / Sweden 0.4894 0.1611 413 -2.171 0.1929
The number of offspring produced by fertile females (conditional component of the model)
Focal haplotype effect sizes
# Fit a simplified version of the model without interactions that can be used with the emmeans() function. This model is reasonable as we detected no evidence for an interaction between any of our fixed effects in the above analysis.

female_emmeans <- glmmTMB(Maternal_total_offspring ~ Social_haplotype + Focal_haplotype + (1|Strain) + (1|Block), data = female_reproductive_output, family = list(family="truncated_nbinom1",link="log"), ziformula = ~., na.action = na.fail, REML = FALSE)

# Now create the pairwise comparisons for focal haplotype

pairs(emmeans(female_emmeans, ~ Focal_haplotype, type = "response")) %>% 
  as_tibble() %>% 
  pander(split.cell = 40, split.table = Inf)
contrast ratio SE df t.ratio p.value
Barcelona / Brownsville 1.211 0.09641 401 2.403 0.1167
Barcelona / Dahomey 1.093 0.08359 401 1.161 0.7734
Barcelona / Israel 1.011 0.08162 401 0.1393 0.9999
Barcelona / Sweden 1.236 0.1043 401 2.506 0.09122
Brownsville / Dahomey 0.9026 0.07126 401 -1.298 0.6925
Brownsville / Israel 0.8352 0.06957 401 -2.162 0.1966
Brownsville / Sweden 1.021 0.0882 401 0.2353 0.9993
Dahomey / Israel 0.9254 0.07353 401 -0.9762 0.8658
Dahomey / Sweden 1.131 0.09338 401 1.487 0.5714
Israel / Sweden 1.222 0.1059 401 2.312 0.1432
Social haplotype effect sizes
# Now for social haplotype

pairs(emmeans(female_emmeans, ~ Social_haplotype, type = "response")) %>% 
  as_tibble() %>% 
  pander(split.cell = 40, split.table = Inf)
contrast ratio SE df t.ratio p.value
Barcelona / Brownsville 1.002 0.08302 401 0.02839 1
Barcelona / Dahomey 1.004 0.077 401 0.05686 1
Barcelona / Israel 0.9262 0.07605 401 -0.9337 0.8837
Barcelona / Sweden 0.9444 0.07505 401 -0.7196 0.9519
Brownsville / Dahomey 1.002 0.08278 401 0.0243 1
Brownsville / Israel 0.924 0.08113 401 -0.9 0.8968
Brownsville / Sweden 0.9422 0.08003 401 -0.7009 0.9562
Dahomey / Israel 0.9222 0.07511 401 -0.9948 0.8576
Dahomey / Sweden 0.9403 0.07402 401 -0.7817 0.9358
Israel / Sweden 1.02 0.08622 401 0.2305 0.9994

\(~\)

Create Figure 1

# Plotting with model predictions

# predict.averaging does not return predictions for the conditional estimates (i.e. model coefficients averaged over models that contain the relevant predictor, rather than over the full specified subset). To predict mean estimates for each categorical variable, I can get these model averaged estimates by manually specifying the models I want to be averaged. These are used only for plotting.

# First average models that contain the predictor focal haplotype in the Zi formula. These were found by inspection of the top model list above.

focal_female_zi_models <- get.models(female_dredge, subset = "26")

# Note that only model "26' contains focal haplotype in the Zi formula. No averaging takes place and estimates are derived straight from this model. The conditional averaged estimates from the female_avgm object are identical to the estimates in model "26".

# fit model "26"

focal_zi_female_avg <- glmmTMB(Maternal_total_offspring ~ Focal_haplotype + (1|Strain) + (1|Block), data = female_reproductive_output, family = list(family="truncated_nbinom1",link="log"), ziformula = ~ Focal_haplotype + Social_haplotype + (1|Strain) + (1|Block), na.action = na.fail, REML = FALSE)


# Now average models that contain the social haplotype predictor in the Zi formula.

social_female_zi_models <- get.models(female_dredge, subset = c("18", "17", "26"))

social_zi_female_avg <- model.avg(social_female_zi_models)

# The conditional averaged estimates from the female_avgm object are identical to the zi social haplotype estimates from the "full model "social_zi_female_avg" object.

# Now average models that contain the focal haplotype predictor in the conditional formula.

focal_female_con_models <- get.models(female_dredge, subset = c("18", "2", "26"))

focal_con_female_avg <- model.avg(focal_female_con_models)

# Estimates match female_avg

# Make a new dataframe, for which we will derive predictions. It's the same as the old data, except that we set Focal haplotype, block and duplicate to the same value for all observations. The re.form = NA argument sets random effects to 0, meaning population means are calculated.
 
new_data <- female_reproductive_output %>%
  ungroup() %>%
  select(Focal_haplotype, Strain, Block) %>%
  mutate(Social_haplotype = "Barcelona", Strain = "Barcelona 1", Block = "1") %>% 
  distinct()

# First lets get predictions for the average number of offspring produced by females that produced at least one progeny, split by focal haplotype.

pred <- predict(focal_con_female_avg, se.fit = TRUE, type = "conditional", re.form = NA, new_data) %>%
  unlist() %>% 
  as.data.frame()

pred1 <- pred %>% 
  slice(1:5) %>% 
  rename(mean_estimate = ".")

pred2 <- pred %>% 
  slice(6:10) %>% 
  rename(SE = ".")
  
pred <- cbind(new_data, pred1, pred2) %>%
  mutate(Upper = mean_estimate + SE,
         Lower = mean_estimate - SE) %>%
  rename(Maternal_total_offspring = mean_estimate)

# Load the data for each individual female that produced offspring so that this can be plotted

female_cond_plot_data <- female_reproductive_output %>% 
  filter(Maternal_total_offspring != 0) %>%
  ungroup() %>% 
  select(Individual, Focal_haplotype, Maternal_total_offspring)

# Now lets plot these predictions

female_focal_cond_plot <- female_cond_plot_data %>%
  ggplot(aes(x = Focal_haplotype, y = Maternal_total_offspring, fill = Focal_haplotype, colour = Focal_haplotype)) +
  geom_quasirandom(data = female_cond_plot_data, width = 0.3, size = 2, alpha =  0.5, pch = 21, colour = 'grey26') +
  scale_fill_manual(values = c("Barcelona" = "#fcde9c", "Brownsville" = "#f58670", "Dahomey" = "#e34f6f", "Israel" = "#d72d7c" , "Sweden" = "#7c1d6f")) +
  geom_point(data = pred, aes(x = Focal_haplotype, y = Maternal_total_offspring), size = 3, colour='black') +
  geom_errorbar(data = pred, aes(x = Focal_haplotype, ymax = Upper, ymin = Lower, width = 0), colour = "black") +
  labs(x = "Female mtDNA haplotype", y = "Number of offspring produced by females") +
  theme_minimal() +
  theme(legend.position = "none") +
  theme(panel.grid.major.x = element_blank())

# Now lets get the Zi predictions for focal haplotype

pred_ZI <- predict(focal_zi_female_avg, se.fit = TRUE, type = "zprob", re.form = NA, new_data) %>%
  unlist() %>% 
  as.data.frame()

pred_ZI_1 <- pred_ZI %>% 
  slice(1:5) %>% 
  rename(mean_estimate = ".")

pred_ZI_2 <- pred_ZI %>% 
  slice(6:10) %>% 
  rename(SE = ".")

pred_focal_ZI <- cbind(new_data, pred_ZI_1, pred_ZI_2) %>%
  transmute(Focal_haplotype, Strain, Block, Social_haplotype, mean_estimate  = 1 - mean_estimate, SE) %>% 
  mutate(Upper = mean_estimate + SE,
         Lower = mean_estimate - SE)
  

# Plot
  
female_focal_zi_plot <- pred_focal_ZI %>%
  ggplot(aes(x = Focal_haplotype, y = mean_estimate, fill = Focal_haplotype, colour = Focal_haplotype)) +
  geom_errorbar(aes(x = Focal_haplotype, ymax = Upper, ymin = Lower, width = 0), colour = "black") +
  geom_point(aes(x = Focal_haplotype, y = mean_estimate), size = 4, pch =21, colour='grey26') +
  scale_fill_manual(values = c("Barcelona" = "#fcde9c", "Brownsville" = "#f58670", "Dahomey" = "#e34f6f", "Israel" = "#d72d7c" , "Sweden" = "#7c1d6f")) +
  labs(x = "Female mtDNA haplotype", y = "Proportion of females producing offspring") +
  ylim(0.4, 1) +
  theme_minimal() +
  theme(legend.position = "none") +
  theme(panel.grid.major.x = element_blank())

# Now create the newdata for social haplotype predictions

new_data_social <- female_reproductive_output %>%
  ungroup() %>%
  select(Social_haplotype, Strain, Block) %>%
  mutate(Focal_haplotype = "Barcelona", Strain = "Barcelona 1", Block = "1") %>% 
  distinct()

# Get zi social haplotype predictions

pred_social_ZI <- predict(social_zi_female_avg, se.fit = TRUE, type = "zprob", re.form = NA, new_data_social) %>%
  unlist() %>% 
  as.data.frame()

pred_ZI_social_1 <- pred_social_ZI %>% 
  slice(1:5) %>% 
  rename(mean_estimate = ".")

pred_ZI_social_2 <- pred_social_ZI %>% 
  slice(6:10) %>% 
  rename(SE = ".")

pred_focal_ZI_social <- cbind(new_data_social, pred_ZI_social_1, pred_ZI_social_2) %>% 
  transmute(Social_haplotype, Strain, Block, Focal_haplotype, mean_estimate  = 1 - mean_estimate, SE) %>% 
  mutate(Upper = mean_estimate + SE,
         Lower = mean_estimate - SE)
  
  # Plot 
  
female_social_zi_plot <- pred_focal_ZI_social %>%
  ggplot(aes(x = Social_haplotype, y = mean_estimate, fill = Social_haplotype, colour = Social_haplotype)) +
  geom_errorbar(aes(x = Social_haplotype, ymax = Upper, ymin = Lower, width = 0), colour = "black") +
  geom_point(aes(x = Social_haplotype, y = mean_estimate), size = 4, pch =21, colour='grey26') +
  scale_fill_manual(values = c("Barcelona" = "#fcde9c", "Brownsville" = "#f58670", "Dahomey" = "#e34f6f", "Israel" = "#d72d7c" , "Sweden" = "#7c1d6f")) +
  labs(x = "Male mtDNA haplotype", y = "Proportion of females producing offspring") +
  ylim(0.4, 1) +
  theme_minimal() +
  theme(legend.position = "none") +
  theme(panel.grid.major.x = element_blank())


# Lets calculate mean estimates from the raw data for the number of offspring produced by females split by social haplotype. We can't use model predictions here because social haplotype is not retained in the conditional part of the model 

female_reproductive_output_cond <- female_reproductive_output %>% 
  filter(Maternal_total_offspring != 0)

female_social_raw_cond <- female_reproductive_output_cond %>% 
  dplyr::group_by(Social_haplotype) %>%
  dplyr::summarise(Mean_offspring = sum(Maternal_total_offspring) / length(Maternal_total_offspring), Lower = (Mean_offspring - SE(Maternal_total_offspring)), Upper = (Mean_offspring + SE(Maternal_total_offspring)), n = n()) %>% 
  rename(Maternal_total_offspring = Mean_offspring)

female_social_cond_plot <- female_reproductive_output_cond %>%
  ggplot(aes(x = Social_haplotype, y = Maternal_total_offspring, fill = Social_haplotype, colour = Social_haplotype)) +
  geom_quasirandom(data = female_reproductive_output_cond, width = 0.3, size = 2, alpha =  0.5, pch = 21, colour = 'grey26') +
scale_fill_manual(values = c("Barcelona" = "#fcde9c", "Brownsville" = "#f58670", "Dahomey" = "#e34f6f", "Israel" = "#d72d7c" , "Sweden" = "#7c1d6f")) +
geom_point(data = female_social_raw_cond, aes(x = Social_haplotype, y = Maternal_total_offspring), size = 3, colour='black') +
  geom_errorbar(data = female_social_raw_cond, aes(x = Social_haplotype, ymax = Upper, ymin = Lower, width = 0), colour = "black") +
  labs(x = "Male mtDNA haplotype", y = "Number of offspring produced by females") +
  theme_minimal() +
  theme(legend.position = "none") +
  theme(panel.grid.major.x = element_blank())


ggarrange(female_focal_zi_plot, female_social_zi_plot, female_focal_cond_plot, female_social_cond_plot, labels = c("a", "b", "c", "d"))

Figure 1: mtDNA directly and indirectly affects female fitness. Panels a and b show model predictions of the mean proportion of females that produced offspring (the zero-inflated or hurdle component of the model) across a female focal mtDNA haplotypes and b social male mtDNA haplotypes. Panels c and d show the direct and indirect effect of mtDNA on the number of offspring produced by a female. Black points show model predictions of the mean for each haplotype in c and mean estimates from the raw data in d, while coloured points represent offspring produced by individual females. Model predictions were not calculated for d because social haplotype was not retained as a predictor for the conditional component of the averaged hurdle model. Error bars depict standard errors in all plots.

\(~\)

Male reproductive fitness


Our measure of male fitness involves both pre- and post-copulatory competitive ability; that is we assess in one measure the combination of 1) the ability of a male to inseminate a female in the presence of another male and 2) the competitive ability of his sperm within females that have been inseminated by another male.

We analyse male fitness as the proportion of offspring produced by mt-strain males competing against a standard bw male competitor. The data contains many 0 or 1 values - corresponding to a monopoly of female fertilisation by one of the males. To model this process we specify a beta-binomial distribution, which allows greater flexibility when modelling the distribution of the response.

The Brownsville haplotype renders males sterile alongside the w1118 nuclear background and sub-fertile alongside all other tested backgrounds. In our experiment, we find that Brownsville males are able to produce offspring but to a very limited capacity. Due to this, our model is unable to produce reliable estimates when the interaction between focal and social haplotype is included. We do not include the interaction in the full model.

We include an additional random effect - MALE ID - in the model to account for repeated measures of each pair of focal and rival males.

(Focal_male_offspring, bw_offspring) ~ Focal_haplotype + Social_haplotype + (1|Strain) + (1|Block) + (1|Male_ID)

response <- cbind(Male_fitness$Focal_male_offspring, Male_fitness$bw_male_offspring)

Male_fitness <- 
  Male_fitness %>% 
  rename(Male_ID = Individual)

male_model <- glmmTMB(response ~ Focal_haplotype + Social_haplotype + (1|Block) + (1|Strain) + (1|Male_ID), data = Male_fitness, family = "betabinomial", na.action = na.fail)

Model evaluation

Table S9: Evaluation of the male adult fitness model. All possible models were evaluated from the global model that included focal haplotype, social haplotype and the random factors strain, block and individual. As there was no clear top model, the final model was calculated via model averaging.

male_dredge <- dredge(male_model)

Male_table <- subset(male_dredge, delta < 6) %>% as.data.frame()


names(Male_table)[names(Male_table) == "(Intercept)"] <- "Intercept"
names(Male_table)[names(Male_table) == "Focal_haplotype"] <- "Focal haplotype"
names(Male_table)[names(Male_table) == "Social_haplotype"] <- "Social haplotype"
names(Male_table)[names(Male_table) == "Focal_haplotype:Social_haplotype"] <- "Focal haplotype x Social haplotype"
names(Male_table)[names(Male_table) == "df"] <- "Degrees of freedom"
names(Male_table)[names(Male_table) == "logLik"] <- "Log likelihood"
names(Male_table)[names(Male_table) == "AICc"] <- "AICc"
names(Male_table)[names(Male_table) == "delta"] <- "Delta"
names(Male_table)[names(Male_table) == "weight"] <- "Weight"

pander(Male_table, split.cell = 40, split.table = Inf)
  cond((Int)) disp((Int)) cond(Focal_haplotype) cond(Social_haplotype) Degrees of freedom Log likelihood AICc Delta Weight
2 -0.3087 + + NA 9 -835.2 1689 0 0.906
4 -0.1068 + + + 13 -833.2 1693 4.531 0.09401

\(~\)

Relative variable importance for each of the predictors and interactions in the male reproductive fitness model set.

# present relative variable importance in a table 

sw(male_dredge) %>%
  as.data.frame() %>%
  pander(split.cell = 40, split.table = Inf, round = 3, col.names = "RVI")
  RVI
cond(Focal_haplotype) 0.994
cond(Social_haplotype) 0.094

\(~\)

Model averaging

Model coefficients, standard error and 95% confidence limits listed in Table 2 are shown for the male adult fitness averaged model. Bold rows indicate significant effects.

# Model average

top_male_models <- get.models(male_dredge, subset = delta < 6)

male_avgm <- model.avg(top_male_models)

# extract useful information

# summary(model.avg(male_binary_dredge, subset = delta < 6))

Male_CIs <- confint(male_avgm) %>% as.data.frame()

Male_estimate <- coefTable(male_avgm) %>% as.data.frame()

Male_p_values <- summary(male_avgm)$coefmat.subset[, 5] %>% as.data.frame() %>% rename(p = ".")

Male_model_avg <- data.frame(Male_estimate, Male_CIs, Male_p_values) %>% select(Estimate, Std..Error,  X2.5.., X97.5.., p)

row.names(Male_model_avg) <- c("Intercept", "Focal haplotype: Brownsville", "Focal haplotype: Dahomey", "Focal haplotype: Israel", "Focal haplotype: Sweden", "Social haplotype: Brownsville", "Social haplotype: Dahomey", "Social haplotype: Israel", "Social haplotype: Sweden")

names(Male_model_avg)[names(Male_model_avg) == "Estimate"] <- "Conditional average estimate"
names(Male_model_avg)[names(Male_model_avg) == "Std..Error"] <- "Standard Error"
names(Male_model_avg)[names(Male_model_avg) == "X2.5.."] <- "2.5% Interval"
names(Male_model_avg)[names(Male_model_avg) == "X97.5.."] <- "97.5% Interval"

pander(Male_model_avg, split.cell = 40, split.table = Inf, emphasize.strong.rows = 2, round = 3)
  Conditional average estimate Standard Error 2.5% Interval 97.5% Interval p
Intercept -0.29 0.276 -0.83 0.251 0.294
Focal haplotype: Brownsville -2.614 0.479 -3.552 -1.676 0
Focal haplotype: Dahomey -0.355 0.285 -0.914 0.205 0.214
Focal haplotype: Israel -0.075 0.314 -0.691 0.54 0.81
Focal haplotype: Sweden 0.143 0.303 -0.452 0.737 0.638
Social haplotype: Brownsville -0.546 0.321 -1.175 0.084 0.089
Social haplotype: Dahomey -0.065 0.326 -0.704 0.574 0.841
Social haplotype: Israel -0.233 0.316 -0.852 0.385 0.46
Social haplotype: Sweden -0.066 0.323 -0.699 0.568 0.839

\(~\)

Comparison of focal and social haplotype effect sizes

While our experiment was not designed to calculate estimates of conventional selection and social selection, we present the standardised effect size for the difference in mean fitness between haplotype pairs, for direct and indirect fitness effects. Our aim is to illustrate that the size of the direct effects on male reproductive competitive ability are much larger than the indirect effects.

Focal haplotype effect sizes
# We can use our original model

# Now create the pairwise comparisons for focal haplotype

pairs(emmeans(male_model, ~ Focal_haplotype, type = "response")) %>% 
  as_tibble() %>% 
  pander(split.cell = 40, split.table = Inf)
contrast odds.ratio SE df t.ratio p.value
Barcelona / Brownsville 14.27 7.073 343 5.364 1.489e-06
Barcelona / Dahomey 1.425 0.4305 343 1.173 0.7667
Barcelona / Israel 1.11 0.3844 343 0.3028 0.9982
Barcelona / Sweden 0.8743 0.2845 343 -0.4129 0.9939
Brownsville / Dahomey 0.09987 0.04649 343 -4.949 1.158e-05
Brownsville / Israel 0.07781 0.03733 343 -5.322 1.843e-06
Brownsville / Sweden 0.06126 0.02963 343 -5.773 1.739e-07
Dahomey / Israel 0.7791 0.2371 343 -0.8203 0.9243
Dahomey / Sweden 0.6134 0.1823 343 -1.645 0.4699
Israel / Sweden 0.7873 0.248 343 -0.7592 0.942
Social haplotype effect sizes
# Now for social haplotype

pairs(emmeans(male_model, ~ Social_haplotype, type = "response")) %>% 
  as_tibble() %>% 
  pander(split.cell = 40, split.table = Inf)
contrast odds.ratio SE df t.ratio p.value
Barcelona / Brownsville 1.726 0.5522 343 1.705 0.4323
Barcelona / Dahomey 1.067 0.3466 343 0.2009 0.9996
Barcelona / Israel 1.263 0.3972 343 0.742 0.9464
Barcelona / Sweden 1.068 0.3438 343 0.204 0.9996
Brownsville / Dahomey 0.6186 0.1971 343 -1.508 0.5582
Brownsville / Israel 0.7318 0.2286 343 -0.9996 0.8554
Brownsville / Sweden 0.6189 0.1957 343 -1.517 0.5519
Dahomey / Israel 1.183 0.3768 343 0.5279 0.9845
Dahomey / Sweden 1 0.3202 343 0.001441 1
Israel / Sweden 0.8456 0.2642 343 -0.5367 0.9835

\(~\)

Create Figure 2

# predict.averaging does not return predictions for the conditional estimates (i.e. model coefficients averaged over models that contain the relevant predictor, rather than over the full specified subset). To predict mean estimates for each categorical variable, I can get these model averaged estimates by manually specifying the models I want to be avergaged. These are used only for plotting.

# First average models that contain the predictor focal haplotype. These were found by inspection of the top model list above.

focal_male_models <- get.models(male_dredge, subset = c("2", "4"))

focal_male_avg <- model.avg(focal_male_models)

# Note that the conditional averaged estimates from the male_avgm object are identical to the full averaged estimates for the focal_male_avg object for focal haplotype.

# Now average models that contain the social haplotype predictor.

social_male_models <- get.models(male_dredge, subset = c("4"))

# Note that there is only one model (the original full model) that contains social haplotype in the < 6 delta subset, so estimates are calculated directly from this model - no averaging occurs. The conditional averaged estimates from the male_avgm object are identical to the estimates from the full model.



# Focal new data

new_data_male <- Male_fitness %>%
  ungroup() %>%
  select(Focal_haplotype, Block, Strain, Male_ID) %>%
  mutate(Social_haplotype = "Barcelona", Block = "1", Strain = "Barcelona 1", Male_ID = "4") %>% 
  distinct() 


pred_male_focal <- predict(focal_male_avg, newdata = new_data_male, type = "response", se.fit = TRUE, re.form = NA) %>%
  unlist() %>% 
  as.data.frame()

pred_male_focal_1 <- pred_male_focal %>% 
  slice(1:5) %>% 
  rename(mean_estimate = ".")

pred_male_focal_2 <- pred_male_focal %>% 
  slice(6:10) %>% 
  rename(SE = ".")
  
pred_focal_male <- cbind(new_data_male, pred_male_focal_1, pred_male_focal_2) %>% 
  rename(Proportion_focal = mean_estimate) %>% 
  mutate(Upper = Proportion_focal + SE,
         Lower = Proportion_focal - SE)

# Plot

Male_focal_plot <- Male_fitness %>%
  ggplot(aes(x = Focal_haplotype, y = Proportion_focal, fill = Focal_haplotype, colour = Focal_haplotype)) +
  geom_quasirandom(data = Male_fitness, width = 0.3, alpha =  0.3, pch = 21, colour = 'grey21', aes(size = Offspring_counted)) +
  scale_size_continuous(range = c(0.5, 6), labels = NULL, breaks = c(20, 40, 60, 80, 100, 120)) +
  scale_fill_manual(values = c("Barcelona" = "#fcde9c", "Brownsville" = "#f58670", "Dahomey" = "#e34f6f", "Israel" = "#d72d7c" , "Sweden" = "#7c1d6f")) +
  geom_point(data = pred_focal_male, aes(x = Focal_haplotype, y = Proportion_focal), size = 3, colour='black') +
  geom_errorbar(data = pred_focal_male, aes(x = Focal_haplotype, ymax = Upper, ymin = Lower, width = 0), colour = "black") +
  labs(x = "Male mtDNA haplotype", y = "Proportion of offspring sired by focal male") +
  theme_minimal() +
  theme(legend.position = "none") +
  theme(panel.grid.major.x = element_blank())


# Social new data

new_data_social_male <- Male_fitness %>%
  ungroup() %>%
  select(Social_haplotype, Block, Strain, Male_ID) %>%
  mutate(Focal_haplotype = "Barcelona", Block = "1", Strain = "Barcelona 1", Male_ID = "4") %>% 
  distinct()

# predict.averaging works over the full average rather than the conditional average that we present. I use a workaround where I create another model average object but only using the models in the < 6 delta subset that include social haplotype. Here only two models make the cut - the full model is the only one containing social haplotype as a predictor so no averaging is neccessary. Plug the full model into the predict function.

pred_male_social <- predict(male_model, newdata = new_data_social_male, type = "response", se.fit = TRUE, re.form = NA) %>%
  unlist() %>% 
  as.data.frame()

pred_male_social_1 <- pred_male_social %>% 
  slice(1:5) %>% 
  rename(mean_estimate = ".")

pred_male_social_2 <- pred_male_social %>% 
  slice(6:10) %>% 
  rename(SE = ".")
  
pred_male_social <- cbind(new_data_social_male, pred_male_social_1, pred_male_social_2) %>% 
  rename(Proportion_focal = mean_estimate) %>% 
  mutate(Upper = Proportion_focal + SE,
         Lower = Proportion_focal - SE)
  

# Plot

Male_social_plot <- Male_fitness %>%
  ggplot(aes(x = Social_haplotype, y = Proportion_focal, fill = Social_haplotype, colour = Social_haplotype)) +
  geom_quasirandom(data = Male_fitness, width = 0.3, alpha =  0.3, pch = 21, colour = 'grey21', aes(size = Offspring_counted)) +
  scale_size_continuous(range = c(0.5, 6), labels = NULL, breaks = c(20, 40, 60, 80, 100, 120)) +
 scale_fill_manual(values = c("Barcelona" = "#fcde9c", "Brownsville" = "#f58670", "Dahomey" = "#e34f6f", "Israel" = "#d72d7c" , "Sweden" = "#7c1d6f")) +
  geom_point(data = pred_male_social, aes(x = Social_haplotype, y = Proportion_focal), size = 3, colour='black') +
  geom_errorbar(data = pred_male_social, aes(x = Social_haplotype, ymax = Upper, ymin = Lower, width = 0), colour = "black") +
  labs(x = "Female mtDNA haplotype", y = "Proportion of offspring sired by focal male") +
  theme_minimal() +
  theme(legend.position = "none") +
  theme(panel.grid.major.x = element_blank())

ggarrange(Male_focal_plot, Male_social_plot, labels = c("a", "b"))

Figure 2: The proportion of offspring produced by mt-strain males competing with standard bw males. a shows the direct effect of mtDNA on male fitness. b shows the indirect genetic effect of female mtDNA on male fitness. Coloured points represent individual males, with larger points indicating a higher number of offspring produced in the vial (sired by either male). Black points show model predictions of the mean proportion of offspring sired by the mt-strain male, with associated standard errors.

\(~\)

Raw data and reproducibility

Table of raw data

For the purposes of completeness, transparency and data archiving, we include the raw data in this report.

Table S10: the raw data-set used in the present study, with NA values resulting from data collection mistakes removed (i.e. two females placed in competitive environment, no value recorded for whether the fly survived, flies that escaped during the experiment etc.).

kable(fitness_data %>% filter(!is.na(Survived)), "html") %>%
  kable_styling() %>%
  scroll_box(width = "100%", height = "800px")
Individual Block Strain Dyad_ID Sex Focal_haplotype Social_haplotype Survived Dev_time Wing_length Maternal_female_offspring Maternal_male_offspring Maternal_total_offspring Paternal_focal_offspring Paternal_bw_offspring Proportion_focal
1 1 Barcelona 1 1 F Barcelona Barcelona 1 NA NA 35 24 59 NA NA NA
2 1 Barcelona 1 1 M Barcelona Barcelona 0 NA NA NA NA NA 0 0 0.0000000
3 1 Brownsville 1 2 F Brownsville Barcelona 1 249 NA 36 45 81 NA NA NA
4 1 Barcelona 1 2 M Barcelona Brownsville 1 NA NA NA NA NA 0 41 0.0000000
5 1 Dahomey 1 3 F Dahomey Barcelona 1 249 NA 17 23 40 NA NA NA
6 1 Barcelona 1 3 M Barcelona Dahomey 1 242 NA NA NA NA 42 0 1.0000000
7 1 Israel 1 4 F Israel Barcelona 1 NA NA 0 0 0 NA NA NA
8 1 Barcelona 1 4 M Barcelona Israel 1 242 NA NA NA NA 32 26 0.5517241
9 1 Sweden 1 5 F Sweden Barcelona 1 NA NA 7 15 22 NA NA NA
10 1 Barcelona 1 5 M Barcelona Sweden 1 267 NA NA NA NA 0 0 0.0000000
11 1 Barcelona 1 6 F Barcelona Brownsville 0 NA NA 0 0 0 NA NA NA
12 1 Brownsville 1 6 M Brownsville Barcelona 0 NA NA NA NA NA 0 0 0.0000000
15 1 Dahomey 1 8 F Dahomey Brownsville 1 242 NA 23 31 54 NA NA NA
16 1 Brownsville 1 8 M Brownsville Dahomey 1 245 NA NA NA NA 0 63 0.0000000
17 1 Israel 1 9 F Israel Brownsville 1 243 NA NA NA NA NA NA NA
18 1 Brownsville 1 9 M Brownsville Israel 1 NA NA NA NA NA 0 0 0.0000000
19 1 Sweden 1 10 F Sweden Brownsville 1 266 NA 26 39 65 NA NA NA
20 1 Brownsville 1 10 M Brownsville Sweden 0 NA NA NA NA NA 0 0 0.0000000
21 1 Barcelona 1 11 F Barcelona Dahomey 1 NA NA 8 21 29 NA NA NA
22 1 Dahomey 1 11 M Dahomey Barcelona 1 267 NA NA NA NA 11 26 0.2972973
23 1 Brownsville 1 12 F Brownsville Dahomey 1 242 NA 11 22 33 NA NA NA
24 1 Dahomey 1 12 M Dahomey Brownsville 1 NA NA NA NA NA 0 13 0.0000000
25 1 Dahomey 1 13 F Dahomey Dahomey 1 265 NA NA NA NA NA NA NA
26 1 Dahomey 1 13 M Dahomey Dahomey 1 NA NA NA NA NA 128 0 1.0000000
27 1 Israel 1 14 F Israel Dahomey 0 NA NA 0 0 0 NA NA NA
28 1 Dahomey 1 14 M Dahomey Israel 1 248 NA NA NA NA 163 0 1.0000000
29 1 Sweden 1 15 F Sweden Dahomey 1 245 NA 16 27 43 NA NA NA
30 1 Dahomey 1 15 M Dahomey Sweden 1 248 NA NA NA NA 105 0 1.0000000
31 1 Barcelona 1 16 F Barcelona Israel 0 NA NA 0 0 0 NA NA NA
32 1 Israel 1 16 M Israel Barcelona 1 249 NA NA NA NA 25 25 0.5000000
38 1 Israel 1 19 M Israel Israel 1 243 NA NA NA NA 0 58 0.0000000
41 1 Barcelona 1 21 F Barcelona Sweden 1 NA NA 0 0 0 NA NA NA
42 1 Sweden 1 21 M Sweden Barcelona 1 NA NA NA NA NA 0 0 0.0000000
43 1 Brownsville 1 22 F Brownsville Sweden 1 270 NA 31 22 53 NA NA NA
44 1 Sweden 1 22 M Sweden Brownsville 1 267 NA NA NA NA 0 0 0.0000000
45 1 Dahomey 1 23 F Dahomey Sweden 1 NA NA 23 32 55 NA NA NA
46 1 Sweden 1 23 M Sweden Dahomey 1 242 NA NA NA NA 0 52 0.0000000
47 1 Israel 1 24 F Israel Sweden 1 NA NA 18 22 40 NA NA NA
48 1 Sweden 1 24 M Sweden Israel 1 NA NA NA NA NA 91 14 0.8666667
49 1 Sweden 1 25 F Sweden Sweden 1 273 NA 18 19 37 NA NA NA
50 1 Sweden 1 25 M Sweden Sweden 1 NA NA NA NA NA 68 4 0.9444444
51 1 Barcelona 1 26 F Barcelona Barcelona 0 NA NA 0 0 0 NA NA NA
52 1 Barcelona 1 26 M Barcelona Barcelona 1 245 NA NA NA NA 138 0 1.0000000
53 1 Brownsville 1 27 F Brownsville Barcelona 1 269 NA 9 17 26 NA NA NA
54 1 Barcelona 1 27 M Barcelona Brownsville 1 269 NA NA NA NA 74 0 1.0000000
55 1 Dahomey 1 28 F Dahomey Barcelona 1 267 NA 25 19 44 NA NA NA
56 1 Barcelona 1 28 M Barcelona Dahomey 1 283 NA NA NA NA 0 25 0.0000000
57 1 Israel 1 29 F Israel Barcelona 0 NA NA 0 0 0 NA NA NA
58 1 Barcelona 1 29 M Barcelona Israel 1 288 NA NA NA NA 0 0 0.0000000
59 1 Sweden 1 30 F Sweden Barcelona 1 283 NA 28 19 47 NA NA NA
60 1 Barcelona 1 30 M Barcelona Sweden 1 283 NA NA NA NA 70 46 0.6034483
61 1 Barcelona 1 31 F Barcelona Brownsville 1 269 NA 0 0 0 NA NA NA
62 1 Brownsville 1 31 M Brownsville Barcelona 1 NA NA NA NA NA 0 32 0.0000000
63 1 Brownsville 1 32 F Brownsville Brownsville 1 NA NA 27 22 49 NA NA NA
64 1 Brownsville 1 32 M Brownsville Brownsville 1 NA NA NA NA NA 0 0 0.0000000
65 1 Dahomey 1 33 F Dahomey Brownsville 1 270 NA 13 16 29 NA NA NA
66 1 Brownsville 1 33 M Brownsville Dahomey 0 NA NA NA NA NA 0 0 0.0000000
67 1 Israel 1 34 F Israel Brownsville 1 273 NA 0 0 0 NA NA NA
68 1 Brownsville 1 34 M Brownsville Israel 1 270 NA NA NA NA 0 52 0.0000000
69 1 Sweden 1 35 F Sweden Brownsville 1 269 NA 9 10 19 NA NA NA
70 1 Brownsville 1 35 M Brownsville Sweden 1 271 NA NA NA NA 0 21 0.0000000
71 1 Barcelona 1 36 F Barcelona Dahomey 1 NA NA 0 0 0 NA NA NA
72 1 Dahomey 1 36 M Dahomey Barcelona 1 269 NA NA NA NA 0 0 0.0000000
73 1 Brownsville 1 37 F Brownsville Dahomey 1 243 NA 18 29 47 NA NA NA
74 1 Dahomey 1 37 M Dahomey Brownsville 1 248 NA NA NA NA 0 49 0.0000000
75 1 Dahomey 1 38 F Dahomey Dahomey 0 NA NA 0 0 0 NA NA NA
76 1 Dahomey 1 38 M Dahomey Dahomey 1 251 NA NA NA NA 0 0 0.0000000
77 1 Israel 1 39 F Israel Dahomey 1 NA NA 35 20 55 NA NA NA
78 1 Dahomey 1 39 M Dahomey Israel 1 248 NA NA NA NA 81 8 0.9101124
79 1 Sweden 1 40 F Sweden Dahomey 0 NA NA 0 0 0 NA NA NA
80 1 Dahomey 1 40 M Dahomey Sweden 1 274 NA NA NA NA 1 23 0.0416667
81 1 Barcelona 1 41 F Barcelona Israel 0 NA NA 0 0 0 NA NA NA
82 1 Israel 1 41 M Israel Barcelona 1 269 NA NA NA NA 0 55 0.0000000
85 1 Dahomey 1 43 F Dahomey Israel 0 NA NA 0 0 0 NA NA NA
86 1 Israel 1 43 M Israel Dahomey 1 267 NA NA NA NA 200 0 1.0000000
87 1 Israel 1 44 F Israel Israel 0 NA NA 0 0 0 NA NA NA
88 1 Israel 1 44 M Israel Israel 1 248 NA NA NA NA 0 0 0.0000000
89 1 Sweden 1 45 F Sweden Israel 1 288 NA 0 0 0 NA NA NA
90 1 Israel 1 45 M Israel Sweden 1 270 NA NA NA NA 22 49 0.3098592
91 1 Barcelona 1 46 F Barcelona Sweden 1 NA NA 19 34 53 NA NA NA
92 1 Sweden 1 46 M Sweden Barcelona 1 NA NA NA NA NA 75 0 1.0000000
93 1 Brownsville 1 47 F Brownsville Sweden 1 267 NA 0 0 0 NA NA NA
94 1 Sweden 1 47 M Sweden Brownsville 1 NA NA NA NA NA 104 2 0.9811321
95 1 Dahomey 1 48 F Dahomey Sweden 0 NA NA 0 0 0 NA NA NA
96 1 Sweden 1 48 M Sweden Dahomey 1 NA NA NA NA NA 0 0 0.0000000
99 1 Sweden 1 50 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
100 1 Sweden 1 50 M Sweden Sweden 1 NA NA NA NA NA 47 0 1.0000000
101 1 Barcelona 1 51 F Barcelona Barcelona 1 249 NA 23 27 50 NA NA NA
102 1 Barcelona 1 51 M Barcelona Barcelona 1 249 NA NA NA NA 0 0 0.0000000
103 1 Brownsville 1 52 F Brownsville Barcelona 1 269 NA 0 0 0 NA NA NA
104 1 Barcelona 1 52 M Barcelona Brownsville 1 NA NA NA NA NA 141 15 0.9038462
105 1 Dahomey 1 53 F Dahomey Barcelona 1 246 NA 22 21 43 NA NA NA
106 1 Barcelona 1 53 M Barcelona Dahomey 1 NA NA NA NA NA 3 27 0.1000000
107 1 Israel 1 54 F Israel Barcelona 0 NA NA 0 0 0 NA NA NA
108 1 Barcelona 1 54 M Barcelona Israel 0 NA NA NA NA NA 0 0 0.0000000
109 1 Sweden 1 55 F Sweden Barcelona 1 NA NA 8 8 16 NA NA NA
110 1 Barcelona 1 55 M Barcelona Sweden 1 NA NA NA NA NA 11 10 0.5238095
111 1 Barcelona 1 56 F Barcelona Brownsville 1 NA NA 20 19 39 NA NA NA
112 1 Brownsville 1 56 M Brownsville Barcelona 0 NA NA NA NA NA 0 0 0.0000000
113 1 Brownsville 1 57 F Brownsville Brownsville 1 NA NA 0 0 0 NA NA NA
114 1 Brownsville 1 57 M Brownsville Brownsville 0 NA NA NA NA NA 0 0 0.0000000
117 1 Israel 1 59 F Israel Brownsville 1 NA NA 0 0 0 NA NA NA
118 1 Brownsville 1 59 M Brownsville Israel 0 NA NA NA NA NA 0 0 0.0000000
119 1 Sweden 1 60 F Sweden Brownsville 1 NA NA 51 50 101 NA NA NA
120 1 Brownsville 1 60 M Brownsville Sweden 0 NA NA NA NA NA 0 0 0.0000000
121 1 Barcelona 1 61 F Barcelona Dahomey 1 248 NA 22 18 40 NA NA NA
122 1 Dahomey 1 61 M Dahomey Barcelona 1 NA NA NA NA NA 0 11 0.0000000
123 1 Brownsville 1 62 F Brownsville Dahomey 1 NA NA 0 0 0 NA NA NA
124 1 Dahomey 1 62 M Dahomey Brownsville 0 NA NA NA NA NA 0 0 0.0000000
125 1 Dahomey 1 63 F Dahomey Dahomey 1 NA NA 23 22 45 NA NA NA
126 1 Dahomey 1 63 M Dahomey Dahomey 1 274 NA NA NA NA 0 0 0.0000000
127 1 Israel 1 64 F Israel Dahomey 1 274 NA 0 0 0 NA NA NA
128 1 Dahomey 1 64 M Dahomey Israel 1 NA NA NA NA NA 0 48 0.0000000
130 1 Dahomey 1 65 M Dahomey Sweden 1 NA NA NA NA NA 0 95 0.0000000
133 1 Brownsville 1 67 F Brownsville Israel 0 NA NA 0 0 0 NA NA NA
134 1 Israel 1 67 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
135 1 Dahomey 1 68 F Dahomey Israel 0 NA NA 0 0 0 NA NA NA
136 1 Israel 1 68 M Israel Dahomey 1 NA NA NA NA NA 94 0 1.0000000
137 1 Israel 1 69 F Israel Israel 1 NA NA NA NA NA NA NA NA
138 1 Israel 1 69 M Israel Israel 0 NA NA NA NA NA 0 0 0.0000000
141 1 Barcelona 1 71 F Barcelona Sweden 1 287 NA 0 0 0 NA NA NA
142 1 Sweden 1 71 M Sweden Barcelona 1 NA NA NA NA NA 0 0 0.0000000
143 1 Brownsville 1 72 F Brownsville Sweden 0 NA NA 0 0 0 NA NA NA
144 1 Sweden 1 72 M Sweden Brownsville 1 NA NA NA NA NA 0 0 0.0000000
147 1 Israel 1 74 F Israel Sweden 0 NA NA 0 0 0 NA NA NA
148 1 Sweden 1 74 M Sweden Israel 0 NA NA NA NA NA 0 0 0.0000000
149 1 Sweden 1 75 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
150 1 Sweden 1 75 M Sweden Sweden 1 NA NA NA NA NA 93 17 0.8454545
151 1 Barcelona 2 76 F Barcelona Barcelona 0 NA NA 0 0 0 NA NA NA
152 1 Barcelona 2 76 M Barcelona Barcelona 1 267 NA NA NA NA NA NA NA
153 1 Brownsville 2 77 F Brownsville Barcelona 0 NA NA 0 0 0 NA NA NA
154 1 Barcelona 2 77 M Barcelona Brownsville 1 NA NA NA NA NA 0 117 0.0000000
155 1 Dahomey 2 78 F Dahomey Barcelona 1 243 NA 0 0 0 NA NA NA
156 1 Barcelona 2 78 M Barcelona Dahomey 0 NA NA NA NA NA 0 0 0.0000000
157 1 Israel 2 79 F Israel Barcelona 1 269 NA 5 8 13 NA NA NA
158 1 Barcelona 2 79 M Barcelona Israel 1 269 NA NA NA NA 0 2 0.0000000
159 1 Sweden 2 80 F Sweden Barcelona 0 NA NA 0 0 0 NA NA NA
160 1 Barcelona 2 80 M Barcelona Sweden 0 NA NA NA NA NA 0 0 0.0000000
161 1 Barcelona 2 81 F Barcelona Brownsville 0 NA NA 0 0 0 NA NA NA
162 1 Brownsville 2 81 M Brownsville Barcelona 1 248 NA NA NA NA 0 0 0.0000000
163 1 Brownsville 2 82 F Brownsville Brownsville 0 NA NA 0 0 0 NA NA NA
164 1 Brownsville 2 82 M Brownsville Brownsville 0 NA NA NA NA NA 0 0 0.0000000
165 1 Dahomey 2 83 F Dahomey Brownsville 1 NA NA 0 0 0 NA NA NA
166 1 Brownsville 2 83 M Brownsville Dahomey 0 NA NA NA NA NA 0 0 0.0000000
167 1 Israel 2 84 F Israel Brownsville 1 248 NA 33 46 79 NA NA NA
168 1 Brownsville 2 84 M Brownsville Israel 1 NA NA NA NA NA 0 0 0.0000000
169 1 Sweden 2 85 F Sweden Brownsville 0 NA NA 0 0 0 NA NA NA
170 1 Brownsville 2 85 M Brownsville Sweden 0 NA NA NA NA NA 0 0 0.0000000
171 1 Barcelona 2 86 F Barcelona Dahomey 1 248 NA 28 35 63 NA NA NA
172 1 Dahomey 2 86 M Dahomey Barcelona 1 248 NA NA NA NA 0 0 0.0000000
173 1 Brownsville 2 87 F Brownsville Dahomey 1 NA NA 18 19 37 NA NA NA
174 1 Dahomey 2 87 M Dahomey Brownsville 1 NA NA NA NA NA 0 43 0.0000000
175 1 Dahomey 2 88 F Dahomey Dahomey 1 NA NA 21 21 42 NA NA NA
176 1 Dahomey 2 88 M Dahomey Dahomey 0 NA NA NA NA NA 0 0 0.0000000
177 1 Israel 2 89 F Israel Dahomey 0 NA NA 0 0 0 NA NA NA
178 1 Dahomey 2 89 M Dahomey Israel 0 NA NA NA NA NA 0 0 0.0000000
179 1 Sweden 2 90 F Sweden Dahomey 0 NA NA 0 0 0 NA NA NA
180 1 Dahomey 2 90 M Dahomey Sweden 0 NA NA NA NA NA 0 0 0.0000000
181 1 Barcelona 2 91 F Barcelona Israel 1 NA NA 0 0 0 NA NA NA
182 1 Israel 2 91 M Israel Barcelona 1 NA NA NA NA NA 0 28 0.0000000
183 1 Brownsville 2 92 F Brownsville Israel 0 NA NA 0 0 0 NA NA NA
184 1 Israel 2 92 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
185 1 Dahomey 2 93 F Dahomey Israel 1 NA NA 0 0 0 NA NA NA
186 1 Israel 2 93 M Israel Dahomey 0 NA NA NA NA NA 0 0 0.0000000
187 1 Israel 2 94 F Israel Israel 1 NA NA 0 0 0 NA NA NA
188 1 Israel 2 94 M Israel Israel 0 NA NA NA NA NA 0 0 0.0000000
189 1 Sweden 2 95 F Sweden Israel 0 NA NA 0 0 0 NA NA NA
190 1 Israel 2 95 M Israel Sweden 1 250 NA NA NA NA 64 0 1.0000000
191 1 Barcelona 2 96 F Barcelona Sweden 1 250 NA 25 30 55 NA NA NA
192 1 Sweden 2 96 M Sweden Barcelona 0 NA NA NA NA NA 0 0 0.0000000
193 1 Brownsville 2 97 F Brownsville Sweden 1 NA NA 30 33 63 NA NA NA
194 1 Sweden 2 97 M Sweden Brownsville 1 NA NA NA NA NA 97 2 0.9797980
195 1 Dahomey 2 98 F Dahomey Sweden 0 NA NA 0 0 0 NA NA NA
196 1 Sweden 2 98 M Sweden Dahomey 1 NA NA NA NA NA 116 2 0.9830508
197 1 Israel 2 99 F Israel Sweden 0 NA NA 0 0 0 NA NA NA
198 1 Sweden 2 99 M Sweden Israel 1 269 NA NA NA NA 79 17 0.8229167
199 1 Sweden 2 100 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
200 1 Sweden 2 100 M Sweden Sweden 1 248 NA NA NA NA 96 0 1.0000000
201 1 Barcelona 2 101 F Barcelona Barcelona 1 NA NA NA NA NA NA NA NA
202 1 Barcelona 2 101 M Barcelona Barcelona 0 NA NA NA NA NA 0 0 0.0000000
203 1 Brownsville 2 102 F Brownsville Barcelona 1 243 NA 15 18 33 NA NA NA
204 1 Barcelona 2 102 M Barcelona Brownsville 1 NA NA NA NA NA 19 51 0.2714286
205 1 Dahomey 2 103 F Dahomey Barcelona 1 269 NA 4 6 10 NA NA NA
206 1 Barcelona 2 103 M Barcelona Dahomey 1 NA NA NA NA NA 57 8 0.8769231
207 1 Israel 2 104 F Israel Barcelona 1 269 NA 0 0 0 NA NA NA
208 1 Barcelona 2 104 M Barcelona Israel 1 NA NA NA NA NA 0 101 0.0000000
209 1 Sweden 2 105 F Sweden Barcelona 1 NA NA NA NA NA NA NA NA
210 1 Barcelona 2 105 M Barcelona Sweden 1 NA NA NA NA NA 79 0 1.0000000
213 1 Brownsville 2 107 F Brownsville Brownsville 1 NA NA 17 22 39 NA NA NA
214 1 Brownsville 2 107 M Brownsville Brownsville 1 NA NA NA NA NA 0 0 0.0000000
215 1 Dahomey 2 108 F Dahomey Brownsville 1 NA NA 28 37 65 NA NA NA
216 1 Brownsville 2 108 M Brownsville Dahomey 1 NA NA NA NA NA 0 34 0.0000000
217 1 Israel 2 109 F Israel Brownsville 0 NA NA 0 0 0 NA NA NA
218 1 Brownsville 2 109 M Brownsville Israel 0 NA NA NA NA NA 0 0 0.0000000
219 1 Sweden 2 110 F Sweden Brownsville 0 NA NA 0 0 0 NA NA NA
220 1 Brownsville 2 110 M Brownsville Sweden 1 274 NA NA NA NA 0 20 0.0000000
221 1 Barcelona 2 111 F Barcelona Dahomey 0 NA NA 0 0 0 NA NA NA
222 1 Dahomey 2 111 M Dahomey Barcelona 0 NA NA NA NA NA 0 0 0.0000000
223 1 Brownsville 2 112 F Brownsville Dahomey 1 267 NA 0 0 0 NA NA NA
224 1 Dahomey 2 112 M Dahomey Brownsville 1 267 NA NA NA NA 66 0 1.0000000
227 1 Israel 2 114 F Israel Dahomey 1 NA NA 0 0 0 NA NA NA
228 1 Dahomey 2 114 M Dahomey Israel 1 NA NA NA NA NA 0 8 0.0000000
229 1 Sweden 2 115 F Sweden Dahomey 1 267 NA 0 0 0 NA NA NA
230 1 Dahomey 2 115 M Dahomey Sweden 1 269 NA NA NA NA 0 0 0.0000000
231 1 Barcelona 2 116 F Barcelona Israel 0 NA NA 0 0 0 NA NA NA
232 1 Israel 2 116 M Israel Barcelona 0 NA NA NA NA NA 0 0 0.0000000
233 1 Brownsville 2 117 F Brownsville Israel 1 248 NA 0 0 0 NA NA NA
234 1 Israel 2 117 M Israel Brownsville 1 267 NA NA NA NA 47 0 1.0000000
235 1 Dahomey 2 118 F Dahomey Israel 1 270 NA 30 31 61 NA NA NA
236 1 Israel 2 118 M Israel Dahomey 1 274 NA NA NA NA 11 0 1.0000000
237 1 Israel 2 119 F Israel Israel 1 248 NA 23 47 70 NA NA NA
238 1 Israel 2 119 M Israel Israel 1 248 NA NA NA NA 19 0 1.0000000
239 1 Sweden 2 120 F Sweden Israel 1 248 NA 37 46 83 NA NA NA
240 1 Israel 2 120 M Israel Sweden 0 NA NA NA NA NA 0 0 0.0000000
241 1 Barcelona 2 121 F Barcelona Sweden 1 NA NA 0 0 0 NA NA NA
242 1 Sweden 2 121 M Sweden Barcelona 1 269 NA NA NA NA 21 19 0.5250000
243 1 Brownsville 2 122 F Brownsville Sweden 0 NA NA 0 0 0 NA NA NA
244 1 Sweden 2 122 M Sweden Brownsville 0 NA NA NA NA NA 0 0 0.0000000
247 1 Israel 2 124 F Israel Sweden 1 250 NA 26 17 43 NA NA NA
248 1 Sweden 2 124 M Sweden Israel 1 267 NA NA NA NA 0 0 0.0000000
249 1 Sweden 2 125 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
250 1 Sweden 2 125 M Sweden Sweden 1 NA NA NA NA NA 0 1 0.0000000
251 1 Barcelona 2 126 F Barcelona Barcelona 1 274 NA 16 20 36 NA NA NA
252 1 Barcelona 2 126 M Barcelona Barcelona 1 288 NA NA NA NA 0 74 0.0000000
253 1 Brownsville 2 127 F Brownsville Barcelona 0 NA NA 0 0 0 NA NA NA
254 1 Barcelona 2 127 M Barcelona Brownsville 1 269 NA NA NA NA 29 0 1.0000000
255 1 Dahomey 2 128 F Dahomey Barcelona 1 247 NA 40 43 83 NA NA NA
256 1 Barcelona 2 128 M Barcelona Dahomey 0 NA NA NA NA NA 0 0 0.0000000
257 1 Israel 2 129 F Israel Barcelona 1 NA NA 35 33 68 NA NA NA
258 1 Barcelona 2 129 M Barcelona Israel 0 NA NA NA NA NA 0 0 0.0000000
259 1 Sweden 2 130 F Sweden Barcelona 1 NA NA 50 27 77 NA NA NA
260 1 Barcelona 2 130 M Barcelona Sweden 0 NA NA NA NA NA 0 0 0.0000000
261 1 Barcelona 2 131 F Barcelona Brownsville 0 NA NA 0 0 0 NA NA NA
262 1 Brownsville 2 131 M Brownsville Barcelona 1 267 NA NA NA NA 0 0 0.0000000
263 1 Brownsville 2 132 F Brownsville Brownsville 1 NA NA 38 46 84 NA NA NA
264 1 Brownsville 2 132 M Brownsville Brownsville 0 NA NA NA NA NA 0 0 0.0000000
265 1 Dahomey 2 133 F Dahomey Brownsville 0 NA NA 0 0 0 NA NA NA
266 1 Brownsville 2 133 M Brownsville Dahomey 1 269 NA NA NA NA NA NA NA
267 1 Israel 2 134 F Israel Brownsville 0 NA NA 0 0 0 NA NA NA
268 1 Brownsville 2 134 M Brownsville Israel 1 NA NA NA NA NA 0 33 0.0000000
269 1 Sweden 2 135 F Sweden Brownsville 0 NA NA 0 0 0 NA NA NA
270 1 Brownsville 2 135 M Brownsville Sweden 1 NA NA NA NA NA 0 0 0.0000000
271 1 Barcelona 2 136 F Barcelona Dahomey 0 NA NA 0 0 0 NA NA NA
272 1 Dahomey 2 136 M Dahomey Barcelona 1 267 NA NA NA NA 89 0 1.0000000
273 1 Brownsville 2 137 F Brownsville Dahomey 1 243 NA NA NA NA NA NA NA
274 1 Dahomey 2 137 M Dahomey Brownsville 0 NA NA NA NA NA 0 0 0.0000000
275 1 Dahomey 2 138 F Dahomey Dahomey 1 NA NA 14 13 27 NA NA NA
276 1 Dahomey 2 138 M Dahomey Dahomey 1 270 NA NA NA NA 124 0 1.0000000
277 1 Israel 2 139 F Israel Dahomey 1 NA NA 0 0 0 NA NA NA
278 1 Dahomey 2 139 M Dahomey Israel 1 NA NA NA NA NA 0 0 0.0000000
281 1 Barcelona 2 141 F Barcelona Israel 1 NA NA 0 0 0 NA NA NA
282 1 Israel 2 141 M Israel Barcelona 0 NA NA NA NA NA 0 0 0.0000000
283 1 Brownsville 2 142 F Brownsville Israel 1 250 NA 0 0 0 NA NA NA
284 1 Israel 2 142 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
285 1 Dahomey 2 143 F Dahomey Israel 1 293 NA 0 0 0 NA NA NA
286 1 Israel 2 143 M Israel Dahomey 0 NA NA NA NA NA 0 0 0.0000000
287 1 Israel 2 144 F Israel Israel 1 250 NA 0 0 0 NA NA NA
288 1 Israel 2 144 M Israel Israel 0 NA NA NA NA NA 0 0 0.0000000
291 1 Barcelona 2 146 F Barcelona Sweden 0 NA NA 0 0 0 NA NA NA
292 1 Sweden 2 146 M Sweden Barcelona 1 269 NA NA NA NA 18 0 1.0000000
293 1 Brownsville 2 147 F Brownsville Sweden 1 267 NA 24 23 47 NA NA NA
294 1 Sweden 2 147 M Sweden Brownsville 1 NA NA NA NA NA 64 9 0.8767123
295 1 Dahomey 2 148 F Dahomey Sweden 0 NA NA 0 0 0 NA NA NA
296 1 Sweden 2 148 M Sweden Dahomey 1 267 NA NA NA NA 69 11 0.8625000
297 1 Israel 2 149 F Israel Sweden 0 NA NA 0 0 0 NA NA NA
298 1 Sweden 2 149 M Sweden Israel 1 NA NA NA NA NA 0 45 0.0000000
299 1 Sweden 2 150 F Sweden Sweden 1 NA NA NA NA NA NA NA NA
300 1 Sweden 2 150 M Sweden Sweden 0 NA NA NA NA NA 0 0 0.0000000
301 2 Barcelona 1 151 F Barcelona Barcelona 1 287 NA 0 0 0 NA NA NA
302 2 Barcelona 1 151 M Barcelona Barcelona 1 289 NA NA NA NA 110 7 0.9401709
303 2 Brownsville 1 152 F Brownsville Barcelona 0 NA NA 0 0 0 NA NA NA
304 2 Barcelona 1 152 M Barcelona Brownsville 1 294 NA NA NA NA 94 0 1.0000000
305 2 Dahomey 1 153 F Dahomey Barcelona 0 NA NA 0 0 0 NA NA NA
306 2 Barcelona 1 153 M Barcelona Dahomey 1 287 NA NA NA NA 14 0 1.0000000
307 2 Israel 1 154 F Israel Barcelona 1 272 NA NA NA NA NA NA NA
308 2 Barcelona 1 154 M Barcelona Israel 0 NA NA NA NA NA 0 0 0.0000000
309 2 Sweden 1 155 F Sweden Barcelona 0 NA NA 0 0 0 NA NA NA
310 2 Barcelona 1 155 M Barcelona Sweden 0 NA NA NA NA NA 0 0 0.0000000
311 2 Barcelona 1 156 F Barcelona Brownsville 0 NA NA 0 0 0 NA NA NA
312 2 Brownsville 1 156 M Brownsville Barcelona 1 290 NA NA NA NA 0 88 0.0000000
313 2 Brownsville 1 157 F Brownsville Brownsville 1 269 NA 36 37 73 NA NA NA
314 2 Brownsville 1 157 M Brownsville Brownsville 1 268 NA NA NA NA 0 21 0.0000000
315 2 Dahomey 1 158 F Dahomey Brownsville 1 288 NA 19 32 51 NA NA NA
316 2 Brownsville 1 158 M Brownsville Dahomey 1 NA NA NA NA NA 0 88 0.0000000
317 2 Israel 1 159 F Israel Brownsville 0 NA NA 0 0 0 NA NA NA
318 2 Brownsville 1 159 M Brownsville Israel 1 286 NA NA NA NA 18 75 0.1935484
319 2 Sweden 1 160 F Sweden Brownsville 0 NA NA 0 0 0 NA NA NA
320 2 Brownsville 1 160 M Brownsville Sweden 0 NA NA NA NA NA 0 0 0.0000000
321 2 Barcelona 1 161 F Barcelona Dahomey 1 296 NA 0 0 0 NA NA NA
322 2 Dahomey 1 161 M Dahomey Barcelona 1 NA NA NA NA NA 0 72 0.0000000
323 2 Brownsville 1 162 F Brownsville Dahomey 1 298 NA 19 16 35 NA NA NA
324 2 Dahomey 1 162 M Dahomey Brownsville 1 295 NA NA NA NA 46 23 0.6666667
325 2 Dahomey 1 163 F Dahomey Dahomey 0 NA NA 0 0 0 NA NA NA
326 2 Dahomey 1 163 M Dahomey Dahomey 1 286 NA NA NA NA 0 26 0.0000000
327 2 Israel 1 164 F Israel Dahomey 0 NA NA 0 0 0 NA NA NA
328 2 Dahomey 1 164 M Dahomey Israel 1 266 NA NA NA NA 0 29 0.0000000
329 2 Sweden 1 165 F Sweden Dahomey 1 269 NA 39 24 63 NA NA NA
330 2 Dahomey 1 165 M Dahomey Sweden 1 275 NA NA NA NA 33 16 0.6734694
331 2 Barcelona 1 166 F Barcelona Israel 0 NA NA 0 0 0 NA NA NA
332 2 Israel 1 166 M Israel Barcelona 1 267 NA NA NA NA 0 6 0.0000000
333 2 Brownsville 1 167 F Brownsville Israel 0 NA NA 0 0 0 NA NA NA
334 2 Israel 1 167 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
335 2 Dahomey 1 168 F Dahomey Israel 1 287 NA 39 28 67 NA NA NA
336 2 Israel 1 168 M Israel Dahomey 0 NA NA NA NA NA 0 0 0.0000000
337 2 Israel 1 169 F Israel Israel 0 NA NA 0 0 0 NA NA NA
338 2 Israel 1 169 M Israel Israel 1 275 NA NA NA NA 34 10 0.7727273
339 2 Sweden 1 170 F Sweden Israel 0 NA NA 0 0 0 NA NA NA
340 2 Israel 1 170 M Israel Sweden 0 NA NA NA NA NA 0 0 0.0000000
341 2 Barcelona 1 171 F Barcelona Sweden 0 NA NA 0 0 0 NA NA NA
342 2 Sweden 1 171 M Sweden Barcelona 0 NA NA NA NA NA 0 0 0.0000000
343 2 Brownsville 1 172 F Brownsville Sweden 1 264 NA 26 32 58 NA NA NA
344 2 Sweden 1 172 M Sweden Brownsville 0 NA NA NA NA NA 0 0 0.0000000
345 2 Dahomey 1 173 F Dahomey Sweden 0 NA NA 0 0 0 NA NA NA
346 2 Sweden 1 173 M Sweden Dahomey 1 NA NA NA NA NA 45 1 0.9782609
347 2 Israel 1 174 F Israel Sweden 1 289 NA 47 41 88 NA NA NA
348 2 Sweden 1 174 M Sweden Israel 0 NA NA NA NA NA 0 0 0.0000000
349 2 Sweden 1 175 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
350 2 Sweden 1 175 M Sweden Sweden 1 269 NA NA NA NA 12 0 1.0000000
351 2 Barcelona 1 176 F Barcelona Barcelona 0 NA NA 0 0 0 NA NA NA
352 2 Barcelona 1 176 M Barcelona Barcelona 1 286 NA NA NA NA 23 37 0.3833333
353 2 Brownsville 1 177 F Brownsville Barcelona 0 NA NA 0 0 0 NA NA NA
354 2 Barcelona 1 177 M Barcelona Brownsville 1 268 NA NA NA NA 107 13 0.8916667
355 2 Dahomey 1 178 F Dahomey Barcelona 1 264 NA 28 20 48 NA NA NA
356 2 Barcelona 1 178 M Barcelona Dahomey 1 271 NA NA NA NA 48 0 1.0000000
357 2 Israel 1 179 F Israel Barcelona 0 NA NA 0 0 0 NA NA NA
358 2 Barcelona 1 179 M Barcelona Israel 0 NA NA NA NA NA 0 0 0.0000000
359 2 Sweden 1 180 F Sweden Barcelona 1 248 NA 36 37 73 NA NA NA
360 2 Barcelona 1 180 M Barcelona Sweden 0 NA NA NA NA NA 0 0 0.0000000
361 2 Barcelona 1 181 F Barcelona Brownsville 0 NA NA 0 0 0 NA NA NA
362 2 Brownsville 1 181 M Brownsville Barcelona 0 NA NA NA NA NA 0 0 0.0000000
363 2 Brownsville 1 182 F Brownsville Brownsville 0 NA NA 0 0 0 NA NA NA
364 2 Brownsville 1 182 M Brownsville Brownsville 0 NA NA NA NA NA 0 0 0.0000000
365 2 Dahomey 1 183 F Dahomey Brownsville 0 NA NA 0 0 0 NA NA NA
366 2 Brownsville 1 183 M Brownsville Dahomey 0 NA NA NA NA NA 0 0 0.0000000
367 2 Israel 1 184 F Israel Brownsville 0 NA NA 0 0 0 NA NA NA
368 2 Brownsville 1 184 M Brownsville Israel 0 NA NA NA NA NA 0 0 0.0000000
369 2 Sweden 1 185 F Sweden Brownsville 1 268 NA 2 6 8 NA NA NA
370 2 Brownsville 1 185 M Brownsville Sweden 1 250 NA NA NA NA 0 69 0.0000000
371 2 Barcelona 1 186 F Barcelona Dahomey 0 NA NA 0 0 0 NA NA NA
372 2 Dahomey 1 186 M Dahomey Barcelona 0 NA NA NA NA NA 0 0 0.0000000
373 2 Brownsville 1 187 F Brownsville Dahomey 1 271 NA 26 37 63 NA NA NA
374 2 Dahomey 1 187 M Dahomey Brownsville 1 NA NA NA NA NA 0 0 0.0000000
375 2 Dahomey 1 188 F Dahomey Dahomey 1 245 NA 9 10 19 NA NA NA
376 2 Dahomey 1 188 M Dahomey Dahomey 0 NA NA NA NA NA 0 0 0.0000000
377 2 Israel 1 189 F Israel Dahomey 1 NA NA 17 22 39 NA NA NA
378 2 Dahomey 1 189 M Dahomey Israel 1 NA NA NA NA NA 0 0 0.0000000
379 2 Sweden 1 190 F Sweden Dahomey 1 286 NA 24 26 50 NA NA NA
380 2 Dahomey 1 190 M Dahomey Sweden 1 270 NA NA NA NA 64 28 0.6956522
381 2 Barcelona 1 191 F Barcelona Israel 0 NA NA 0 0 0 NA NA NA
382 2 Israel 1 191 M Israel Barcelona 0 NA NA NA NA NA 0 0 0.0000000
383 2 Brownsville 1 192 F Brownsville Israel 0 NA NA 0 0 0 NA NA NA
384 2 Israel 1 192 M Israel Brownsville 1 273 NA NA NA NA 64 0 1.0000000
385 2 Dahomey 1 193 F Dahomey Israel 0 NA NA 0 0 0 NA NA NA
386 2 Israel 1 193 M Israel Dahomey 1 286 NA NA NA NA 0 49 0.0000000
387 2 Israel 1 194 F Israel Israel 1 269 NA 0 0 0 NA NA NA
388 2 Israel 1 194 M Israel Israel 0 NA NA NA NA NA 0 0 0.0000000
389 2 Sweden 1 195 F Sweden Israel 0 NA NA 0 0 0 NA NA NA
390 2 Israel 1 195 M Israel Sweden 1 264 NA NA NA NA 0 0 0.0000000
391 2 Barcelona 1 196 F Barcelona Sweden 0 NA NA 0 0 0 NA NA NA
392 2 Sweden 1 196 M Sweden Barcelona 1 266 NA NA NA NA 23 5 0.8214286
393 2 Brownsville 1 197 F Brownsville Sweden 1 271 NA 0 0 0 NA NA NA
394 2 Sweden 1 197 M Sweden Brownsville 1 264 NA NA NA NA 19 0 1.0000000
395 2 Dahomey 1 198 F Dahomey Sweden 0 NA NA 0 0 0 NA NA NA
396 2 Sweden 1 198 M Sweden Dahomey 0 NA NA NA NA NA 0 0 0.0000000
397 2 Israel 1 199 F Israel Sweden 0 NA NA 0 0 0 NA NA NA
398 2 Sweden 1 199 M Sweden Israel 0 NA NA NA NA NA 0 0 0.0000000
399 2 Sweden 1 200 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
400 2 Sweden 1 200 M Sweden Sweden 1 266 NA NA NA NA 0 0 0.0000000
401 2 Barcelona 1 201 F Barcelona Barcelona 1 268 NA 0 0 0 NA NA NA
402 2 Barcelona 1 201 M Barcelona Barcelona 1 266 NA NA NA NA 59 66 0.4720000
403 2 Brownsville 1 202 F Brownsville Barcelona 0 NA NA 0 0 0 NA NA NA
404 2 Barcelona 1 202 M Barcelona Brownsville 1 272 NA NA NA NA 17 0 1.0000000
405 2 Dahomey 1 203 F Dahomey Barcelona 0 NA NA 0 0 0 NA NA NA
406 2 Barcelona 1 203 M Barcelona Dahomey 0 NA NA NA NA NA 0 0 0.0000000
407 2 Israel 1 204 F Israel Barcelona 1 NA NA 29 17 46 NA NA NA
408 2 Barcelona 1 204 M Barcelona Israel 1 NA NA NA NA NA 96 0 1.0000000
409 2 Sweden 1 205 F Sweden Barcelona 1 287 NA 18 25 43 NA NA NA
410 2 Barcelona 1 205 M Barcelona Sweden 1 275 NA NA NA NA 0 50 0.0000000
411 2 Barcelona 1 206 F Barcelona Brownsville 1 269 NA 26 26 52 NA NA NA
412 2 Brownsville 1 206 M Brownsville Barcelona 0 NA NA NA NA NA 0 0 0.0000000
413 2 Brownsville 1 207 F Brownsville Brownsville 1 NA NA 26 38 64 NA NA NA
414 2 Brownsville 1 207 M Brownsville Brownsville 1 NA NA NA NA NA 0 100 0.0000000
415 2 Dahomey 1 208 F Dahomey Brownsville 0 NA NA 0 0 0 NA NA NA
416 2 Brownsville 1 208 M Brownsville Dahomey 1 270 NA NA NA NA 0 49 0.0000000
417 2 Israel 1 209 F Israel Brownsville 0 NA NA 0 0 0 NA NA NA
418 2 Brownsville 1 209 M Brownsville Israel 1 263 NA NA NA NA 0 0 0.0000000
419 2 Sweden 1 210 F Sweden Brownsville 0 NA NA 0 0 0 NA NA NA
420 2 Brownsville 1 210 M Brownsville Sweden 1 264 NA NA NA NA 0 90 0.0000000
421 2 Barcelona 1 211 F Barcelona Dahomey 0 NA NA 0 0 0 NA NA NA
422 2 Dahomey 1 211 M Dahomey Barcelona 1 283 NA NA NA NA 57 7 0.8906250
423 2 Brownsville 1 212 F Brownsville Dahomey 0 NA NA 0 0 0 NA NA NA
424 2 Dahomey 1 212 M Dahomey Brownsville 0 NA NA NA NA NA 0 0 0.0000000
425 2 Dahomey 1 213 F Dahomey Dahomey 1 266 NA 26 30 56 NA NA NA
426 2 Dahomey 1 213 M Dahomey Dahomey 1 266 NA NA NA NA 23 2 0.9200000
427 2 Israel 1 214 F Israel Dahomey 0 NA NA 0 0 0 NA NA NA
428 2 Dahomey 1 214 M Dahomey Israel 1 249 NA NA NA NA 13 68 0.1604938
429 2 Sweden 1 215 F Sweden Dahomey 0 NA NA 0 0 0 NA NA NA
430 2 Dahomey 1 215 M Dahomey Sweden 0 NA NA NA NA NA 0 0 0.0000000
431 2 Barcelona 1 216 F Barcelona Israel 0 NA NA 0 0 0 NA NA NA
432 2 Israel 1 216 M Israel Barcelona 0 NA NA NA NA NA 0 0 0.0000000
433 2 Brownsville 1 217 F Brownsville Israel 0 NA NA 0 0 0 NA NA NA
434 2 Israel 1 217 M Israel Brownsville 1 291 NA NA NA NA 0 55 0.0000000
435 2 Dahomey 1 218 F Dahomey Israel 1 NA NA 26 13 39 NA NA NA
436 2 Israel 1 218 M Israel Dahomey 0 NA NA NA NA NA 0 0 0.0000000
439 2 Sweden 1 220 F Sweden Israel 1 297 NA 17 22 39 NA NA NA
440 2 Israel 1 220 M Israel Sweden 0 NA NA NA NA NA 0 0 0.0000000
441 2 Barcelona 1 221 F Barcelona Sweden 1 269 NA 31 19 50 NA NA NA
442 2 Sweden 1 221 M Sweden Barcelona 1 294 NA NA NA NA 0 27 0.0000000
443 2 Brownsville 1 222 F Brownsville Sweden 0 NA NA 0 0 0 NA NA NA
444 2 Sweden 1 222 M Sweden Brownsville 0 NA NA NA NA NA 0 0 0.0000000
445 2 Dahomey 1 223 F Dahomey Sweden 1 262 NA 35 30 65 NA NA NA
446 2 Sweden 1 223 M Sweden Dahomey 1 266 NA NA NA NA 0 34 0.0000000
447 2 Israel 1 224 F Israel Sweden 0 NA NA 0 0 0 NA NA NA
448 2 Sweden 1 224 M Sweden Israel 1 265 NA NA NA NA 79 7 0.9186047
449 2 Sweden 1 225 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
450 2 Sweden 1 225 M Sweden Sweden 0 NA NA NA NA NA 0 0 0.0000000
451 2 Barcelona 1 226 F Barcelona Barcelona 0 NA NA 0 0 0 NA NA NA
452 2 Barcelona 1 226 M Barcelona Barcelona 1 270 NA NA NA NA 0 0 0.0000000
453 2 Brownsville 1 227 F Brownsville Barcelona 1 266 NA 45 56 101 NA NA NA
454 2 Barcelona 1 227 M Barcelona Brownsville 0 NA NA NA NA NA 0 0 0.0000000
455 2 Dahomey 1 228 F Dahomey Barcelona 0 NA NA 0 0 0 NA NA NA
456 2 Barcelona 1 228 M Barcelona Dahomey 1 277 NA NA NA NA 59 0 1.0000000
457 2 Israel 1 229 F Israel Barcelona 0 NA NA 0 0 0 NA NA NA
458 2 Barcelona 1 229 M Barcelona Israel 1 271 NA NA NA NA 74 0 1.0000000
461 2 Barcelona 1 231 F Barcelona Brownsville 0 NA NA 0 0 0 NA NA NA
462 2 Brownsville 1 231 M Brownsville Barcelona 0 NA NA NA NA NA 0 0 0.0000000
463 2 Brownsville 1 232 F Brownsville Brownsville 1 265 NA 0 0 0 NA NA NA
464 2 Brownsville 1 232 M Brownsville Brownsville 1 265 NA NA NA NA 0 37 0.0000000
465 2 Dahomey 1 233 F Dahomey Brownsville 1 286 NA 17 31 48 NA NA NA
466 2 Brownsville 1 233 M Brownsville Dahomey 1 264 NA NA NA NA 0 66 0.0000000
467 2 Israel 1 234 F Israel Brownsville 0 NA NA 0 0 0 NA NA NA
468 2 Brownsville 1 234 M Brownsville Israel 1 276 NA NA NA NA 0 0 0.0000000
469 2 Sweden 1 235 F Sweden Brownsville 0 NA NA 0 0 0 NA NA NA
470 2 Brownsville 1 235 M Brownsville Sweden 0 NA NA NA NA NA 0 0 0.0000000
471 2 Barcelona 1 236 F Barcelona Dahomey 0 NA NA 0 0 0 NA NA NA
472 2 Dahomey 1 236 M Dahomey Barcelona 0 NA NA NA NA NA 0 0 0.0000000
473 2 Brownsville 1 237 F Brownsville Dahomey 0 NA NA 0 0 0 NA NA NA
474 2 Dahomey 1 237 M Dahomey Brownsville 0 NA NA NA NA NA 0 0 0.0000000
475 2 Dahomey 1 238 F Dahomey Dahomey 0 NA NA 0 0 0 NA NA NA
476 2 Dahomey 1 238 M Dahomey Dahomey 0 NA NA NA NA NA 0 0 0.0000000
479 2 Sweden 1 240 F Sweden Dahomey 1 272 NA 34 40 74 NA NA NA
480 2 Dahomey 1 240 M Dahomey Sweden 0 NA NA NA NA NA 0 0 0.0000000
481 2 Barcelona 1 241 F Barcelona Israel 0 NA NA 0 0 0 NA NA NA
482 2 Israel 1 241 M Israel Barcelona 0 NA NA NA NA NA 0 0 0.0000000
483 2 Brownsville 1 242 F Brownsville Israel 0 NA NA 0 0 0 NA NA NA
484 2 Israel 1 242 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
491 2 Barcelona 1 246 F Barcelona Sweden 1 287 NA 22 25 47 NA NA NA
492 2 Sweden 1 246 M Sweden Barcelona 0 NA NA NA NA NA 0 0 0.0000000
493 2 Brownsville 1 247 F Brownsville Sweden 0 NA NA 0 0 0 NA NA NA
494 2 Sweden 1 247 M Sweden Brownsville 0 NA NA NA NA NA 0 0 0.0000000
495 2 Dahomey 1 248 F Dahomey Sweden 1 270 NA 38 33 71 NA NA NA
496 2 Sweden 1 248 M Sweden Dahomey 0 NA NA NA NA NA 0 0 0.0000000
497 2 Israel 1 249 F Israel Sweden 0 NA NA 0 0 0 NA NA NA
498 2 Sweden 1 249 M Sweden Israel 0 NA NA NA NA NA 0 0 0.0000000
499 2 Sweden 1 250 F Sweden Sweden 1 NA NA 0 0 0 NA NA NA
500 2 Sweden 1 250 M Sweden Sweden 1 294 NA NA NA NA 0 0 0.0000000
501 2 Barcelona 2 251 F Barcelona Barcelona 1 246 NA 25 20 45 NA NA NA
502 2 Barcelona 2 251 M Barcelona Barcelona 1 271 NA NA NA NA 0 64 0.0000000
503 2 Brownsville 2 252 F Brownsville Barcelona 1 271 NA 0 0 0 NA NA NA
504 2 Barcelona 2 252 M Barcelona Brownsville 1 NA NA NA NA NA 0 0 0.0000000
507 2 Israel 2 254 F Israel Barcelona 0 NA NA 0 0 0 NA NA NA
508 2 Barcelona 2 254 M Barcelona Israel 1 262 NA NA NA NA 0 80 0.0000000
511 2 Barcelona 2 256 F Barcelona Brownsville 1 NA NA 32 25 57 NA NA NA
512 2 Brownsville 2 256 M Brownsville Barcelona 1 270 NA NA NA NA 0 62 0.0000000
513 2 Brownsville 2 257 F Brownsville Brownsville 1 261 NA 31 33 64 NA NA NA
514 2 Brownsville 2 257 M Brownsville Brownsville 1 294 NA NA NA NA 0 0 0.0000000
515 2 Dahomey 2 258 F Dahomey Brownsville 0 NA NA 0 0 0 NA NA NA
516 2 Brownsville 2 258 M Brownsville Dahomey 1 264 NA NA NA NA 0 18 0.0000000
517 2 Israel 2 259 F Israel Brownsville 1 249 NA 0 0 0 NA NA NA
518 2 Brownsville 2 259 M Brownsville Israel 1 271 NA NA NA NA 67 16 0.8072289
519 2 Sweden 2 260 F Sweden Brownsville 1 306 NA 0 0 0 NA NA NA
520 2 Brownsville 2 260 M Brownsville Sweden 1 NA NA NA NA NA 0 0 0.0000000
521 2 Barcelona 2 261 F Barcelona Dahomey 1 246 NA 35 39 74 NA NA NA
522 2 Dahomey 2 261 M Dahomey Barcelona 1 268 NA NA NA NA 32 0 1.0000000
523 2 Brownsville 2 262 F Brownsville Dahomey 1 268 NA 27 31 58 NA NA NA
524 2 Dahomey 2 262 M Dahomey Brownsville 1 263 NA NA NA NA 58 29 0.6666667
525 2 Dahomey 2 263 F Dahomey Dahomey 1 246 NA 0 0 0 NA NA NA
526 2 Dahomey 2 263 M Dahomey Dahomey 0 NA NA NA NA NA 0 0 0.0000000
527 2 Israel 2 264 F Israel Dahomey 1 294 NA 0 0 0 NA NA NA
528 2 Dahomey 2 264 M Dahomey Israel 1 302 NA NA NA NA 12 82 0.1276596
529 2 Sweden 2 265 F Sweden Dahomey 0 NA NA 0 0 0 NA NA NA
530 2 Dahomey 2 265 M Dahomey Sweden 1 249 NA NA NA NA 81 0 1.0000000
531 2 Barcelona 2 266 F Barcelona Israel 1 249 NA 57 72 129 NA NA NA
532 2 Israel 2 266 M Israel Barcelona 1 267 NA NA NA NA 26 63 0.2921348
533 2 Brownsville 2 267 F Brownsville Israel 1 298 NA 0 0 0 NA NA NA
534 2 Israel 2 267 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
535 2 Dahomey 2 268 F Dahomey Israel 1 250 NA 27 33 60 NA NA NA
536 2 Israel 2 268 M Israel Dahomey 0 NA NA NA NA NA 0 0 0.0000000
537 2 Israel 2 269 F Israel Israel 1 244 NA 33 40 73 NA NA NA
538 2 Israel 2 269 M Israel Israel 1 312 NA NA NA NA 57 34 0.6263736
539 2 Sweden 2 270 F Sweden Israel 0 NA NA 0 0 0 NA NA NA
540 2 Israel 2 270 M Israel Sweden 1 248 NA NA NA NA 54 26 0.6750000
541 2 Barcelona 2 271 F Barcelona Sweden 1 267 NA 18 20 38 NA NA NA
542 2 Sweden 2 271 M Sweden Barcelona 0 NA NA NA NA NA 0 0 0.0000000
543 2 Brownsville 2 272 F Brownsville Sweden 0 NA NA 0 0 0 NA NA NA
544 2 Sweden 2 272 M Sweden Brownsville 0 NA NA NA NA NA 0 0 0.0000000
545 2 Dahomey 2 273 F Dahomey Sweden 1 NA NA 0 0 0 NA NA NA
546 2 Sweden 2 273 M Sweden Dahomey 0 NA NA NA NA NA 0 0 0.0000000
547 2 Israel 2 274 F Israel Sweden 1 NA NA 30 24 54 NA NA NA
548 2 Sweden 2 274 M Sweden Israel 1 NA NA NA NA NA 0 46 0.0000000
549 2 Sweden 2 275 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
550 2 Sweden 2 275 M Sweden Sweden 1 267 NA NA NA NA 0 0 0.0000000
551 2 Barcelona 2 276 F Barcelona Barcelona 1 275 NA 16 19 35 NA NA NA
552 2 Barcelona 2 276 M Barcelona Barcelona 0 NA NA NA NA NA 0 0 0.0000000
553 2 Brownsville 2 277 F Brownsville Barcelona 1 294 NA 11 13 24 NA NA NA
554 2 Barcelona 2 277 M Barcelona Brownsville 1 267 NA NA NA NA 0 29 0.0000000
555 2 Dahomey 2 278 F Dahomey Barcelona 0 NA NA 0 0 0 NA NA NA
556 2 Barcelona 2 278 M Barcelona Dahomey 1 265 NA NA NA NA 0 0 0.0000000
557 2 Israel 2 279 F Israel Barcelona 0 NA NA 0 0 0 NA NA NA
558 2 Barcelona 2 279 M Barcelona Israel 0 NA NA NA NA NA 0 0 0.0000000
559 2 Sweden 2 280 F Sweden Barcelona 0 NA NA 0 0 0 NA NA NA
560 2 Barcelona 2 280 M Barcelona Sweden 0 NA NA NA NA NA 0 0 0.0000000
561 2 Barcelona 2 281 F Barcelona Brownsville 1 NA NA 29 28 57 NA NA NA
562 2 Brownsville 2 281 M Brownsville Barcelona 1 270 NA NA NA NA 0 0 0.0000000
563 2 Brownsville 2 282 F Brownsville Brownsville 1 246 NA 0 0 0 NA NA NA
564 2 Brownsville 2 282 M Brownsville Brownsville 1 266 NA NA NA NA 0 53 0.0000000
567 2 Israel 2 284 F Israel Brownsville 0 NA NA 0 0 0 NA NA NA
568 2 Brownsville 2 284 M Brownsville Israel 0 NA NA NA NA NA 0 0 0.0000000
569 2 Sweden 2 285 F Sweden Brownsville 1 245 NA 0 0 0 NA NA NA
570 2 Brownsville 2 285 M Brownsville Sweden 1 288 NA NA NA NA 0 58 0.0000000
571 2 Barcelona 2 286 F Barcelona Dahomey 1 264 NA 21 23 44 NA NA NA
572 2 Dahomey 2 286 M Dahomey Barcelona 1 294 NA NA NA NA 0 0 0.0000000
581 2 Barcelona 2 291 F Barcelona Israel 1 NA NA 0 0 0 NA NA NA
582 2 Israel 2 291 M Israel Barcelona 1 NA NA NA NA NA 51 41 0.5543478
583 2 Brownsville 2 292 F Brownsville Israel 1 NA NA 7 4 11 NA NA NA
584 2 Israel 2 292 M Israel Brownsville 1 NA NA NA NA NA 45 1 0.9782609
591 2 Barcelona 2 296 F Barcelona Sweden 1 244 NA 55 45 100 NA NA NA
592 2 Sweden 2 296 M Sweden Barcelona 0 NA NA NA NA NA 0 0 0.0000000
601 3 Barcelona 1 301 F Barcelona Barcelona 1 260 1.102 24 34 58 NA NA NA
602 3 Barcelona 1 301 M Barcelona Barcelona 1 258 1.009 NA NA NA 50 0 1.0000000
603 3 Brownsville 1 302 F Brownsville Barcelona 1 259 0.988 0 0 0 NA NA NA
604 3 Barcelona 1 302 M Barcelona Brownsville 1 268 NA NA NA NA 136 13 0.9127517
605 3 Dahomey 1 303 F Dahomey Barcelona 1 268 NA 0 0 0 NA NA NA
606 3 Barcelona 1 303 M Barcelona Dahomey 1 269 0.940 NA NA NA 0 26 0.0000000
607 3 Israel 1 304 F Israel Barcelona 0 NA NA 0 0 0 NA NA NA
608 3 Barcelona 1 304 M Barcelona Israel 0 NA NA NA NA NA 0 0 0.0000000
609 3 Sweden 1 305 F Sweden Barcelona 1 267 0.981 17 15 32 NA NA NA
610 3 Barcelona 1 305 M Barcelona Sweden 1 260 0.820 NA NA NA 96 0 1.0000000
611 3 Barcelona 1 306 F Barcelona Brownsville 1 249 1.202 40 41 81 NA NA NA
612 3 Brownsville 1 306 M Brownsville Barcelona 1 250 NA NA NA NA 0 71 0.0000000
615 3 Dahomey 1 308 F Dahomey Brownsville 0 NA NA 0 0 0 NA NA NA
616 3 Brownsville 1 308 M Brownsville Dahomey 1 268 NA NA NA NA 0 0 0.0000000
617 3 Israel 1 309 F Israel Brownsville 1 283 0.969 6 6 12 NA NA NA
618 3 Brownsville 1 309 M Brownsville Israel 1 252 NA NA NA NA 0 25 0.0000000
619 3 Sweden 1 310 F Sweden Brownsville 1 261 NA 0 0 0 NA NA NA
620 3 Brownsville 1 310 M Brownsville Sweden 1 261 0.936 NA NA NA 0 73 0.0000000
621 3 Barcelona 1 311 F Barcelona Dahomey 1 267 0.811 9 11 20 NA NA NA
622 3 Dahomey 1 311 M Dahomey Barcelona 1 264 NA NA NA NA 6 69 0.0800000
623 3 Brownsville 1 312 F Brownsville Dahomey 1 266 NA 19 17 36 NA NA NA
624 3 Dahomey 1 312 M Dahomey Brownsville 1 266 0.840 NA NA NA 45 1 0.9782609
625 3 Dahomey 1 313 F Dahomey Dahomey 1 246 1.264 40 31 71 NA NA NA
626 3 Dahomey 1 313 M Dahomey Dahomey 1 268 0.957 NA NA NA 0 120 0.0000000
627 3 Israel 1 314 F Israel Dahomey 1 265 NA 13 19 32 NA NA NA
628 3 Dahomey 1 314 M Dahomey Israel 1 273 NA NA NA NA 42 21 0.6666667
629 3 Sweden 1 315 F Sweden Dahomey 1 246 1.179 13 12 25 NA NA NA
630 3 Dahomey 1 315 M Dahomey Sweden 1 245 1.102 NA NA NA 67 0 1.0000000
631 3 Barcelona 1 316 F Barcelona Israel 0 NA NA 0 0 0 NA NA NA
632 3 Israel 1 316 M Israel Barcelona 1 248 1.179 NA NA NA 90 0 1.0000000
633 3 Brownsville 1 317 F Brownsville Israel 0 NA NA 0 0 0 NA NA NA
634 3 Israel 1 317 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
635 3 Dahomey 1 318 F Dahomey Israel 0 NA NA 0 0 0 NA NA NA
636 3 Israel 1 318 M Israel Dahomey 1 252 1.014 NA NA NA 72 17 0.8089888
637 3 Israel 1 319 F Israel Israel 0 NA NA 0 0 0 NA NA NA
638 3 Israel 1 319 M Israel Israel 0 NA NA NA NA NA 0 0 0.0000000
639 3 Sweden 1 320 F Sweden Israel 1 NA 1.194 25 21 46 NA NA NA
640 3 Israel 1 320 M Israel Sweden 1 NA NA NA NA NA 0 0 0.0000000
641 3 Barcelona 1 321 F Barcelona Sweden 1 258 NA 28 20 48 NA NA NA
642 3 Sweden 1 321 M Sweden Barcelona 1 260 1.030 NA NA NA 140 0 1.0000000
643 3 Brownsville 1 322 F Brownsville Sweden 1 252 1.083 23 22 45 NA NA NA
644 3 Sweden 1 322 M Sweden Brownsville 1 270 0.926 NA NA NA 0 103 0.0000000
645 3 Dahomey 1 323 F Dahomey Sweden 1 246 1.287 0 0 0 NA NA NA
646 3 Sweden 1 323 M Sweden Dahomey 0 NA NA NA NA NA 0 0 0.0000000
647 3 Israel 1 324 F Israel Sweden 0 NA NA 0 0 0 NA NA NA
648 3 Sweden 1 324 M Sweden Israel 1 246 1.139 NA NA NA 44 0 1.0000000
649 3 Sweden 1 325 F Sweden Sweden 1 244 1.163 26 32 58 NA NA NA
650 3 Sweden 1 325 M Sweden Sweden 1 287 0.951 NA NA NA 0 52 0.0000000
651 3 Barcelona 1 326 F Barcelona Barcelona 1 260 1.020 35 19 54 NA NA NA
652 3 Barcelona 1 326 M Barcelona Barcelona 0 NA NA NA NA NA 0 0 0.0000000
653 3 Brownsville 1 327 F Brownsville Barcelona 1 256 1.142 29 29 58 NA NA NA
654 3 Barcelona 1 327 M Barcelona Brownsville 0 NA NA NA NA NA 0 0 0.0000000
655 3 Dahomey 1 328 F Dahomey Barcelona 1 254 1.176 13 34 47 NA NA NA
656 3 Barcelona 1 328 M Barcelona Dahomey 1 264 0.982 NA NA NA 119 0 1.0000000
657 3 Israel 1 329 F Israel Barcelona 1 273 1.108 0 0 0 NA NA NA
658 3 Barcelona 1 329 M Barcelona Israel 1 267 1.033 NA NA NA 0 59 0.0000000
661 3 Barcelona 1 331 F Barcelona Brownsville 0 NA NA 0 0 0 NA NA NA
662 3 Brownsville 1 331 M Brownsville Barcelona 0 NA NA NA NA NA 0 0 0.0000000
663 3 Brownsville 1 332 F Brownsville Brownsville 1 265 1.039 5 4 9 NA NA NA
664 3 Brownsville 1 332 M Brownsville Brownsville 1 268 1.012 NA NA NA 0 72 0.0000000
665 3 Dahomey 1 333 F Dahomey Brownsville 0 NA NA 0 0 0 NA NA NA
666 3 Brownsville 1 333 M Brownsville Dahomey 1 250 1.050 NA NA NA 0 0 0.0000000
667 3 Israel 1 334 F Israel Brownsville 0 NA NA 0 0 0 NA NA NA
668 3 Brownsville 1 334 M Brownsville Israel 1 243 1.009 NA NA NA 0 32 0.0000000
669 3 Sweden 1 335 F Sweden Brownsville 0 NA NA 0 0 0 NA NA NA
670 3 Brownsville 1 335 M Brownsville Sweden 0 NA NA NA NA NA 0 0 0.0000000
671 3 Barcelona 1 336 F Barcelona Dahomey 0 NA NA 0 0 0 NA NA NA
672 3 Dahomey 1 336 M Dahomey Barcelona 1 273 NA NA NA NA 0 57 0.0000000
673 3 Brownsville 1 337 F Brownsville Dahomey 1 248 NA 27 24 51 NA NA NA
674 3 Dahomey 1 337 M Dahomey Brownsville 1 253 NA NA NA NA 0 0 0.0000000
675 3 Dahomey 1 338 F Dahomey Dahomey 0 NA NA 0 0 0 NA NA NA
676 3 Dahomey 1 338 M Dahomey Dahomey 1 273 0.964 NA NA NA 0 76 0.0000000
677 3 Israel 1 339 F Israel Dahomey 0 NA NA 0 0 0 NA NA NA
678 3 Dahomey 1 339 M Dahomey Israel 1 266 1.030 NA NA NA 86 4 0.9555556
679 3 Sweden 1 340 F Sweden Dahomey 1 248 NA 0 0 0 NA NA NA
680 3 Dahomey 1 340 M Dahomey Sweden 1 258 NA NA NA NA 0 48 0.0000000
681 3 Barcelona 1 341 F Barcelona Israel 0 NA NA 0 0 0 NA NA NA
682 3 Israel 1 341 M Israel Barcelona 1 262 1.050 NA NA NA 83 5 0.9431818
683 3 Brownsville 1 342 F Brownsville Israel 1 261 1.084 22 23 45 NA NA NA
684 3 Israel 1 342 M Israel Brownsville 1 261 0.975 NA NA NA 69 0 1.0000000
685 3 Dahomey 1 343 F Dahomey Israel 1 259 1.155 0 0 0 NA NA NA
686 3 Israel 1 343 M Israel Dahomey 1 283 0.931 NA NA NA 0 40 0.0000000
687 3 Israel 1 344 F Israel Israel 1 269 NA 0 0 0 NA NA NA
688 3 Israel 1 344 M Israel Israel 1 276 1.060 NA NA NA 138 0 1.0000000
689 3 Sweden 1 345 F Sweden Israel 1 271 1.038 14 15 29 NA NA NA
690 3 Israel 1 345 M Israel Sweden 1 274 1.032 NA NA NA 30 6 0.8333333
691 3 Barcelona 1 346 F Barcelona Sweden 0 NA NA 0 0 0 NA NA NA
692 3 Sweden 1 346 M Sweden Barcelona 1 266 1.035 NA NA NA 0 47 0.0000000
693 3 Brownsville 1 347 F Brownsville Sweden 1 259 1.106 36 24 60 NA NA NA
694 3 Sweden 1 347 M Sweden Brownsville 1 253 1.054 NA NA NA 53 6 0.8983051
695 3 Dahomey 1 348 F Dahomey Sweden 1 270 NA 0 0 0 NA NA NA
696 3 Sweden 1 348 M Sweden Dahomey 1 261 1.074 NA NA NA 0 37 0.0000000
697 3 Israel 1 349 F Israel Sweden 1 275 1.167 32 28 60 NA NA NA
698 3 Sweden 1 349 M Sweden Israel 1 288 NA NA NA NA 0 0 0.0000000
699 3 Sweden 1 350 F Sweden Sweden 1 249 1.111 30 26 56 NA NA NA
700 3 Sweden 1 350 M Sweden Sweden 1 270 1.072 NA NA NA 85 17 0.8333333
701 3 Barcelona 1 351 F Barcelona Barcelona 1 262 NA NA NA NA NA NA NA
702 3 Barcelona 1 351 M Barcelona Barcelona 0 NA NA NA NA NA 0 0 0.0000000
703 3 Brownsville 1 352 F Brownsville Barcelona 0 NA NA 0 0 0 NA NA NA
704 3 Barcelona 1 352 M Barcelona Brownsville 0 NA NA NA NA NA 0 0 0.0000000
705 3 Dahomey 1 353 F Dahomey Barcelona 1 247 1.113 15 14 29 NA NA NA
706 3 Barcelona 1 353 M Barcelona Dahomey 1 267 NA NA NA NA 0 0 0.0000000
707 3 Israel 1 354 F Israel Barcelona 1 258 1.210 29 18 47 NA NA NA
708 3 Barcelona 1 354 M Barcelona Israel 1 261 1.137 NA NA NA 50 0 1.0000000
709 3 Sweden 1 355 F Sweden Barcelona 1 252 1.057 26 23 49 NA NA NA
710 3 Barcelona 1 355 M Barcelona Sweden 1 249 1.060 NA NA NA 71 13 0.8452381
711 3 Barcelona 1 356 F Barcelona Brownsville 1 267 1.074 38 35 73 NA NA NA
712 3 Brownsville 1 356 M Brownsville Barcelona 1 256 1.082 NA NA NA 0 87 0.0000000
713 3 Brownsville 1 357 F Brownsville Brownsville 1 268 NA NA NA NA NA NA NA
714 3 Brownsville 1 357 M Brownsville Brownsville 0 NA NA NA NA NA 0 0 0.0000000
715 3 Dahomey 1 358 F Dahomey Brownsville 1 246 1.220 0 0 0 NA NA NA
716 3 Brownsville 1 358 M Brownsville Dahomey 1 249 1.094 NA NA NA 0 45 0.0000000
717 3 Israel 1 359 F Israel Brownsville 1 265 1.105 0 0 0 NA NA NA
718 3 Brownsville 1 359 M Brownsville Israel 0 NA NA NA NA NA 0 0 0.0000000
719 3 Sweden 1 360 F Sweden Brownsville 1 247 1.285 NA NA NA NA NA NA
720 3 Brownsville 1 360 M Brownsville Sweden 0 NA NA NA NA NA 0 0 0.0000000
721 3 Barcelona 1 361 F Barcelona Dahomey 0 NA NA 0 0 0 NA NA NA
722 3 Dahomey 1 361 M Dahomey Barcelona 1 258 1.071 NA NA NA 151 1 0.9934211
723 3 Brownsville 1 362 F Brownsville Dahomey 1 255 1.178 5 5 10 NA NA NA
724 3 Dahomey 1 362 M Dahomey Brownsville 1 254 1.087 NA NA NA 150 2 0.9868421
725 3 Dahomey 1 363 F Dahomey Dahomey 1 293 1.052 21 32 53 NA NA NA
726 3 Dahomey 1 363 M Dahomey Dahomey 1 270 NA NA NA NA 0 0 0.0000000
727 3 Israel 1 364 F Israel Dahomey 1 265 1.233 44 32 76 NA NA NA
728 3 Dahomey 1 364 M Dahomey Israel 0 NA NA NA NA NA 0 0 0.0000000
729 3 Sweden 1 365 F Sweden Dahomey 1 266 NA 20 14 34 NA NA NA
730 3 Dahomey 1 365 M Dahomey Sweden 1 247 1.060 NA NA NA 112 30 0.7887324
731 3 Barcelona 1 366 F Barcelona Israel 1 260 1.179 0 0 0 NA NA NA
732 3 Israel 1 366 M Israel Barcelona 1 264 1.038 NA NA NA 0 0 0.0000000
733 3 Brownsville 1 367 F Brownsville Israel 0 NA NA 0 0 0 NA NA NA
734 3 Israel 1 367 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
735 3 Dahomey 1 368 F Dahomey Israel 1 262 1.106 26 25 51 NA NA NA
736 3 Israel 1 368 M Israel Dahomey 0 NA NA NA NA NA 0 0 0.0000000
737 3 Israel 1 369 F Israel Israel 0 NA NA 0 0 0 NA NA NA
738 3 Israel 1 369 M Israel Israel 1 256 1.134 NA NA NA 1 3 0.2500000
739 3 Sweden 1 370 F Sweden Israel 1 259 1.214 8 18 26 NA NA NA
740 3 Israel 1 370 M Israel Sweden 0 NA NA NA NA NA 0 0 0.0000000
741 3 Barcelona 1 371 F Barcelona Sweden 0 NA NA 0 0 0 NA NA NA
742 3 Sweden 1 371 M Sweden Barcelona 1 257 1.005 NA NA NA 73 36 0.6697248
743 3 Brownsville 1 372 F Brownsville Sweden 1 263 1.057 31 21 52 NA NA NA
744 3 Sweden 1 372 M Sweden Brownsville 1 270 0.928 NA NA NA 0 11 0.0000000
745 3 Dahomey 1 373 F Dahomey Sweden 1 262 1.068 24 28 52 NA NA NA
746 3 Sweden 1 373 M Sweden Dahomey 1 271 NA NA NA NA 0 0 0.0000000
747 3 Israel 1 374 F Israel Sweden 1 278 1.133 27 30 57 NA NA NA
748 3 Sweden 1 374 M Sweden Israel 1 261 NA NA NA NA 59 109 0.3511905
749 3 Sweden 1 375 F Sweden Sweden 1 268 1.140 38 31 69 NA NA NA
750 3 Sweden 1 375 M Sweden Sweden 0 NA NA NA NA NA 0 0 0.0000000
751 3 Barcelona 1 376 F Barcelona Barcelona 0 NA NA 0 0 0 NA NA NA
752 3 Barcelona 1 376 M Barcelona Barcelona 1 268 0.926 NA NA NA 0 19 0.0000000
753 3 Brownsville 1 377 F Brownsville Barcelona 1 243 1.369 0 0 0 NA NA NA
754 3 Barcelona 1 377 M Barcelona Brownsville 0 NA NA NA NA NA 0 0 0.0000000
755 3 Dahomey 1 378 F Dahomey Barcelona 1 264 NA 0 0 0 NA NA NA
756 3 Barcelona 1 378 M Barcelona Dahomey 0 NA NA NA NA NA 0 0 0.0000000
757 3 Israel 1 379 F Israel Barcelona 1 262 1.202 31 37 68 NA NA NA
758 3 Barcelona 1 379 M Barcelona Israel 1 285 1.016 NA NA NA 0 32 0.0000000
759 3 Sweden 1 380 F Sweden Barcelona 1 253 NA 0 0 0 NA NA NA
760 3 Barcelona 1 380 M Barcelona Sweden 1 289 NA NA NA NA 0 0 0.0000000
761 3 Barcelona 1 381 F Barcelona Brownsville 1 259 1.303 47 53 100 NA NA NA
762 3 Brownsville 1 381 M Brownsville Barcelona 0 NA NA NA NA NA 0 0 0.0000000
763 3 Brownsville 1 382 F Brownsville Brownsville 1 262 NA 24 11 35 NA NA NA
764 3 Brownsville 1 382 M Brownsville Brownsville 0 NA NA NA NA NA 0 0 0.0000000
765 3 Dahomey 1 383 F Dahomey Brownsville 0 NA NA 0 0 0 NA NA NA
766 3 Brownsville 1 383 M Brownsville Dahomey 0 NA NA NA NA NA 0 0 0.0000000
767 3 Israel 1 384 F Israel Brownsville 1 273 1.174 0 0 0 NA NA NA
768 3 Brownsville 1 384 M Brownsville Israel 1 274 NA NA NA NA 0 0 0.0000000
769 3 Sweden 1 385 F Sweden Brownsville 1 NA 1.086 27 29 56 NA NA NA
770 3 Brownsville 1 385 M Brownsville Sweden 1 NA 0.969 NA NA NA 0 11 0.0000000
771 3 Barcelona 1 386 F Barcelona Dahomey 0 NA NA 0 0 0 NA NA NA
772 3 Dahomey 1 386 M Dahomey Barcelona 1 287 NA NA NA NA 0 65 0.0000000
773 3 Brownsville 1 387 F Brownsville Dahomey 1 262 1.166 37 27 64 NA NA NA
774 3 Dahomey 1 387 M Dahomey Brownsville 0 NA NA NA NA NA 0 0 0.0000000
775 3 Dahomey 1 388 F Dahomey Dahomey 0 NA NA 0 0 0 NA NA NA
776 3 Dahomey 1 388 M Dahomey Dahomey 0 NA NA NA NA NA 0 0 0.0000000
777 3 Israel 1 389 F Israel Dahomey 0 NA NA 0 0 0 NA NA NA
778 3 Dahomey 1 389 M Dahomey Israel 0 NA NA NA NA NA 0 0 0.0000000
781 3 Barcelona 1 391 F Barcelona Israel 0 NA NA 0 0 0 NA NA NA
782 3 Israel 1 391 M Israel Barcelona 0 NA NA NA NA NA 0 0 0.0000000
783 3 Brownsville 1 392 F Brownsville Israel 1 255 1.190 0 0 0 NA NA NA
784 3 Israel 1 392 M Israel Brownsville 1 266 NA NA NA NA 0 63 0.0000000
785 3 Dahomey 1 393 F Dahomey Israel 1 260 1.134 26 31 57 NA NA NA
786 3 Israel 1 393 M Israel Dahomey 0 NA NA NA NA NA 0 0 0.0000000
787 3 Israel 1 394 F Israel Israel 0 NA NA 0 0 0 NA NA NA
788 3 Israel 1 394 M Israel Israel 1 262 1.116 NA NA NA 92 2 0.9787234
789 3 Sweden 1 395 F Sweden Israel 0 NA NA 0 0 0 NA NA NA
790 3 Israel 1 395 M Israel Sweden 1 273 NA NA NA NA 0 0 0.0000000
793 3 Brownsville 1 397 F Brownsville Sweden 1 262 1.183 13 0 13 NA NA NA
794 3 Sweden 1 397 M Sweden Brownsville 0 NA NA NA NA NA 0 0 0.0000000
795 3 Dahomey 1 398 F Dahomey Sweden 1 274 0.940 27 29 56 NA NA NA
796 3 Sweden 1 398 M Sweden Dahomey 0 NA NA NA NA NA 0 0 0.0000000
797 3 Israel 1 399 F Israel Sweden 0 NA NA 0 0 0 NA NA NA
798 3 Sweden 1 399 M Sweden Israel 0 NA NA NA NA NA 0 0 0.0000000
799 3 Sweden 1 400 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
800 3 Sweden 1 400 M Sweden Sweden 0 NA NA NA NA NA 0 0 0.0000000
801 3 Barcelona 2 401 F Barcelona Barcelona 0 NA NA 0 0 0 NA NA NA
802 3 Barcelona 2 401 M Barcelona Barcelona 1 255 NA NA NA NA 0 0 0.0000000
803 3 Brownsville 2 402 F Brownsville Barcelona 1 244 1.108 23 20 43 NA NA NA
804 3 Barcelona 2 402 M Barcelona Brownsville 1 249 NA NA NA NA 0 0 0.0000000
805 3 Dahomey 2 403 F Dahomey Barcelona 1 265 1.024 26 29 55 NA NA NA
806 3 Barcelona 2 403 M Barcelona Dahomey 0 NA NA NA NA NA 0 0 0.0000000
807 3 Israel 2 404 F Israel Barcelona 1 265 1.015 20 18 38 NA NA NA
808 3 Barcelona 2 404 M Barcelona Israel 1 264 0.955 NA NA NA 119 0 1.0000000
809 3 Sweden 2 405 F Sweden Barcelona 0 NA NA 0 0 0 NA NA NA
810 3 Barcelona 2 405 M Barcelona Sweden 1 266 0.956 NA NA NA 0 35 0.0000000
811 3 Barcelona 2 406 F Barcelona Brownsville 1 263 1.119 18 8 26 NA NA NA
812 3 Brownsville 2 406 M Brownsville Barcelona 0 NA NA NA NA NA 0 0 0.0000000
813 3 Brownsville 2 407 F Brownsville Brownsville 0 NA NA 0 0 0 NA NA NA
814 3 Brownsville 2 407 M Brownsville Brownsville 0 NA NA NA NA NA 0 0 0.0000000
815 3 Dahomey 2 408 F Dahomey Brownsville 1 245 1.143 31 32 63 NA NA NA
816 3 Brownsville 2 408 M Brownsville Dahomey 0 NA NA NA NA NA 0 0 0.0000000
817 3 Israel 2 409 F Israel Brownsville 1 258 1.172 37 34 71 NA NA NA
818 3 Brownsville 2 409 M Brownsville Israel 1 269 1.025 NA NA NA 67 44 0.6036036
819 3 Sweden 2 410 F Sweden Brownsville 1 262 1.183 20 20 40 NA NA NA
820 3 Brownsville 2 410 M Brownsville Sweden 1 261 1.006 NA NA NA 96 0 1.0000000
821 3 Barcelona 2 411 F Barcelona Dahomey 0 NA NA 0 0 0 NA NA NA
822 3 Dahomey 2 411 M Dahomey Barcelona 1 257 NA NA NA NA 0 0 0.0000000
823 3 Brownsville 2 412 F Brownsville Dahomey 0 NA NA 0 0 0 NA NA NA
824 3 Dahomey 2 412 M Dahomey Brownsville 1 255 1.068 NA NA NA 32 2 0.9411765
825 3 Dahomey 2 413 F Dahomey Dahomey 0 NA NA 0 0 0 NA NA NA
826 3 Dahomey 2 413 M Dahomey Dahomey 1 263 NA NA NA NA 8 20 0.2857143
827 3 Israel 2 414 F Israel Dahomey 1 242 1.094 23 31 54 NA NA NA
828 3 Dahomey 2 414 M Dahomey Israel 1 262 NA NA NA NA 0 0 0.0000000
829 3 Sweden 2 415 F Sweden Dahomey 1 272 NA 0 0 0 NA NA NA
830 3 Dahomey 2 415 M Dahomey Sweden 1 263 1.023 NA NA NA 121 2 0.9837398
831 3 Barcelona 2 416 F Barcelona Israel 1 276 1.123 27 31 58 NA NA NA
832 3 Israel 2 416 M Israel Barcelona 1 251 1.055 NA NA NA 83 68 0.5496689
833 3 Brownsville 2 417 F Brownsville Israel 1 285 1.013 12 30 42 NA NA NA
834 3 Israel 2 417 M Israel Brownsville 1 261 NA NA NA NA 58 0 1.0000000
835 3 Dahomey 2 418 F Dahomey Israel 1 271 1.137 27 23 50 NA NA NA
836 3 Israel 2 418 M Israel Dahomey 0 NA NA NA NA NA 0 0 0.0000000
837 3 Israel 2 419 F Israel Israel 1 NA NA 0 0 0 NA NA NA
838 3 Israel 2 419 M Israel Israel 1 259 0.977 NA NA NA 0 45 0.0000000
839 3 Sweden 2 420 F Sweden Israel 1 267 1.022 12 23 35 NA NA NA
840 3 Israel 2 420 M Israel Sweden 1 258 1.017 NA NA NA 76 0 1.0000000
841 3 Barcelona 2 421 F Barcelona Sweden 1 257 NA 0 0 0 NA NA NA
842 3 Sweden 2 421 M Sweden Barcelona 1 258 NA NA NA NA 119 0 1.0000000
843 3 Brownsville 2 422 F Brownsville Sweden 1 264 1.133 15 18 33 NA NA NA
844 3 Sweden 2 422 M Sweden Brownsville 1 NA 0.938 NA NA NA 0 40 0.0000000
845 3 Dahomey 2 423 F Dahomey Sweden 0 NA NA 0 0 0 NA NA NA
846 3 Sweden 2 423 M Sweden Dahomey 0 NA NA NA NA NA 0 0 0.0000000
847 3 Israel 2 424 F Israel Sweden 0 NA NA 0 0 0 NA NA NA
848 3 Sweden 2 424 M Sweden Israel 1 283 0.875 NA NA NA 0 56 0.0000000
849 3 Sweden 2 425 F Sweden Sweden 1 247 NA 0 0 0 NA NA NA
850 3 Sweden 2 425 M Sweden Sweden 1 NA NA NA NA NA 0 0 0.0000000
851 3 Barcelona 2 426 F Barcelona Barcelona 1 267 NA 37 20 57 NA NA NA
852 3 Barcelona 2 426 M Barcelona Barcelona 0 NA NA NA NA NA 0 0 0.0000000
855 3 Dahomey 2 428 F Dahomey Barcelona 1 247 1.175 35 30 65 NA NA NA
856 3 Barcelona 2 428 M Barcelona Dahomey 0 NA NA NA NA NA 0 0 0.0000000
857 3 Israel 2 429 F Israel Barcelona 0 NA NA 0 0 0 NA NA NA
858 3 Barcelona 2 429 M Barcelona Israel 1 263 1.051 NA NA NA 93 15 0.8611111
859 3 Sweden 2 430 F Sweden Barcelona 0 NA NA 0 0 0 NA NA NA
860 3 Barcelona 2 430 M Barcelona Sweden 1 268 0.949 NA NA NA 0 115 0.0000000
861 3 Barcelona 2 431 F Barcelona Brownsville 0 NA NA 0 0 0 NA NA NA
862 3 Brownsville 2 431 M Brownsville Barcelona 1 268 1.033 NA NA NA 0 94 0.0000000
863 3 Brownsville 2 432 F Brownsville Brownsville 1 249 NA 0 0 0 NA NA NA
864 3 Brownsville 2 432 M Brownsville Brownsville 0 NA NA NA NA NA 0 0 0.0000000
865 3 Dahomey 2 433 F Dahomey Brownsville 1 250 NA 38 38 76 NA NA NA
866 3 Brownsville 2 433 M Brownsville Dahomey 1 263 NA NA NA NA 0 0 0.0000000
867 3 Israel 2 434 F Israel Brownsville 0 NA NA 0 0 0 NA NA NA
868 3 Brownsville 2 434 M Brownsville Israel 0 NA NA NA NA NA 0 0 0.0000000
869 3 Sweden 2 435 F Sweden Brownsville 0 NA NA 0 0 0 NA NA NA
870 3 Brownsville 2 435 M Brownsville Sweden 1 263 NA NA NA NA 0 0 0.0000000
871 3 Barcelona 2 436 F Barcelona Dahomey 0 NA NA 0 0 0 NA NA NA
872 3 Dahomey 2 436 M Dahomey Barcelona 1 249 NA NA NA NA 0 0 0.0000000
873 3 Brownsville 2 437 F Brownsville Dahomey 0 NA NA 0 0 0 NA NA NA
874 3 Dahomey 2 437 M Dahomey Brownsville 0 NA NA NA NA NA 0 0 0.0000000
875 3 Dahomey 2 438 F Dahomey Dahomey 1 249 NA 0 0 0 NA NA NA
876 3 Dahomey 2 438 M Dahomey Dahomey 1 248 NA NA NA NA 0 0 0.0000000
877 3 Israel 2 439 F Israel Dahomey 1 264 NA 0 0 0 NA NA NA
878 3 Dahomey 2 439 M Dahomey Israel 1 257 NA NA NA NA 0 0 0.0000000
879 3 Sweden 2 440 F Sweden Dahomey 0 NA NA 0 0 0 NA NA NA
880 3 Dahomey 2 440 M Dahomey Sweden 0 NA NA NA NA NA 0 0 0.0000000
881 3 Barcelona 2 441 F Barcelona Israel 1 252 NA 0 0 0 NA NA NA
882 3 Israel 2 441 M Israel Barcelona 1 248 NA NA NA NA 0 0 0.0000000
883 3 Brownsville 2 442 F Brownsville Israel 1 247 NA 0 0 0 NA NA NA
884 3 Israel 2 442 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
885 3 Dahomey 2 443 F Dahomey Israel 1 241 1.142 0 0 0 NA NA NA
886 3 Israel 2 443 M Israel Dahomey 1 NA NA NA NA NA 0 56 0.0000000
887 3 Israel 2 444 F Israel Israel 1 247 NA 0 0 0 NA NA NA
888 3 Israel 2 444 M Israel Israel 1 NA NA NA NA NA 0 0 0.0000000
889 3 Sweden 2 445 F Sweden Israel 0 NA NA 0 0 0 NA NA NA
890 3 Israel 2 445 M Israel Sweden 0 NA NA NA NA NA 0 0 0.0000000
891 3 Barcelona 2 446 F Barcelona Sweden 1 263 1.052 29 26 55 NA NA NA
892 3 Sweden 2 446 M Sweden Barcelona 1 263 1.004 NA NA NA 137 0 1.0000000
893 3 Brownsville 2 447 F Brownsville Sweden 0 NA NA 0 0 0 NA NA NA
894 3 Sweden 2 447 M Sweden Brownsville 0 NA NA NA NA NA 0 0 0.0000000
895 3 Dahomey 2 448 F Dahomey Sweden 1 264 NA 0 0 0 NA NA NA
896 3 Sweden 2 448 M Sweden Dahomey 0 NA NA NA NA NA 0 0 0.0000000
897 3 Israel 2 449 F Israel Sweden 1 255 NA 0 0 0 NA NA NA
898 3 Sweden 2 449 M Sweden Israel 1 247 1.086 NA NA NA 95 12 0.8878505
899 3 Sweden 2 450 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
900 3 Sweden 2 450 M Sweden Sweden 0 NA NA NA NA NA 0 0 0.0000000
901 3 Barcelona 2 451 F Barcelona Barcelona 0 NA NA 0 0 0 NA NA NA
902 3 Barcelona 2 451 M Barcelona Barcelona 0 NA NA NA NA NA 0 0 0.0000000
903 3 Brownsville 2 452 F Brownsville Barcelona 0 NA NA 0 0 0 NA NA NA
904 3 Barcelona 2 452 M Barcelona Brownsville 1 287 0.913 NA NA NA 0 57 0.0000000
905 3 Dahomey 2 453 F Dahomey Barcelona 1 248 1.170 8 11 19 NA NA NA
906 3 Barcelona 2 453 M Barcelona Dahomey 0 NA NA NA NA NA 0 0 0.0000000
907 3 Israel 2 454 F Israel Barcelona 1 261 1.252 51 42 93 NA NA NA
908 3 Barcelona 2 454 M Barcelona Israel 1 251 NA NA NA NA 92 7 0.9292929
909 3 Sweden 2 455 F Sweden Barcelona 0 NA NA 0 0 0 NA NA NA
910 3 Barcelona 2 455 M Barcelona Sweden 0 NA NA NA NA NA 0 0 0.0000000
911 3 Barcelona 2 456 F Barcelona Brownsville 0 NA NA 0 0 0 NA NA NA
912 3 Brownsville 2 456 M Brownsville Barcelona 1 260 1.056 NA NA NA 67 11 0.8589744
913 3 Brownsville 2 457 F Brownsville Brownsville 0 NA NA 0 0 0 NA NA NA
914 3 Brownsville 2 457 M Brownsville Brownsville 0 NA NA NA NA NA 0 0 0.0000000
915 3 Dahomey 2 458 F Dahomey Brownsville 1 NA 1.023 6 11 17 NA NA NA
916 3 Brownsville 2 458 M Brownsville Dahomey 0 NA NA NA NA NA 0 0 0.0000000
917 3 Israel 2 459 F Israel Brownsville 0 NA NA 0 0 0 NA NA NA
918 3 Brownsville 2 459 M Brownsville Israel 1 267 1.110 NA NA NA 50 18 0.7352941
919 3 Sweden 2 460 F Sweden Brownsville 1 290 0.979 22 16 38 NA NA NA
920 3 Brownsville 2 460 M Brownsville Sweden 0 NA NA NA NA NA 0 0 0.0000000
921 3 Barcelona 2 461 F Barcelona Dahomey 0 NA NA 0 0 0 NA NA NA
922 3 Dahomey 2 461 M Dahomey Barcelona 0 NA NA NA NA NA 0 0 0.0000000
923 3 Brownsville 2 462 F Brownsville Dahomey 0 NA NA 0 0 0 NA NA NA
924 3 Dahomey 2 462 M Dahomey Brownsville 1 265 1.088 NA NA NA 0 21 0.0000000
925 3 Dahomey 2 463 F Dahomey Dahomey 0 NA NA 0 0 0 NA NA NA
926 3 Dahomey 2 463 M Dahomey Dahomey 0 NA NA NA NA NA 0 0 0.0000000
927 3 Israel 2 464 F Israel Dahomey 1 290 0.955 37 23 60 NA NA NA
928 3 Dahomey 2 464 M Dahomey Israel 1 256 1.051 NA NA NA 15 18 0.4545455
929 3 Sweden 2 465 F Sweden Dahomey 0 NA NA 0 0 0 NA NA NA
930 3 Dahomey 2 465 M Dahomey Sweden 1 259 NA NA NA NA 2 25 0.0740741
931 3 Barcelona 2 466 F Barcelona Israel 0 NA NA 0 0 0 NA NA NA
932 3 Israel 2 466 M Israel Barcelona 1 251 0.964 NA NA NA 69 0 1.0000000
933 3 Brownsville 2 467 F Brownsville Israel 1 267 1.126 29 27 56 NA NA NA
934 3 Israel 2 467 M Israel Brownsville 1 285 1.005 NA NA NA 0 28 0.0000000
935 3 Dahomey 2 468 F Dahomey Israel 0 NA NA 0 0 0 NA NA NA
936 3 Israel 2 468 M Israel Dahomey 0 NA NA NA NA NA 0 0 0.0000000
937 3 Israel 2 469 F Israel Israel 0 NA NA 0 0 0 NA NA NA
938 3 Israel 2 469 M Israel Israel 1 255 1.122 NA NA NA 83 29 0.7410714
939 3 Sweden 2 470 F Sweden Israel 1 262 0.991 17 21 38 NA NA NA
940 3 Israel 2 470 M Israel Sweden 0 NA NA NA NA NA 0 0 0.0000000
941 3 Barcelona 2 471 F Barcelona Sweden 1 262 1.204 31 39 70 NA NA NA
942 3 Sweden 2 471 M Sweden Barcelona 0 NA NA NA NA NA 0 0 0.0000000
943 3 Brownsville 2 472 F Brownsville Sweden 0 NA NA 0 0 0 NA NA NA
944 3 Sweden 2 472 M Sweden Brownsville 1 281 0.983 NA NA NA 0 24 0.0000000
945 3 Dahomey 2 473 F Dahomey Sweden 1 260 1.133 9 14 23 NA NA NA
946 3 Sweden 2 473 M Sweden Dahomey 0 NA NA NA NA NA 0 0 0.0000000
947 3 Israel 2 474 F Israel Sweden 1 256 1.217 29 38 67 NA NA NA
948 3 Sweden 2 474 M Sweden Israel 0 NA NA NA NA NA 0 0 0.0000000
951 3 Barcelona 2 476 F Barcelona Barcelona 0 NA NA 0 0 0 NA NA NA
952 3 Barcelona 2 476 M Barcelona Barcelona 1 283 NA NA NA NA 0 24 0.0000000
961 3 Barcelona 2 481 F Barcelona Brownsville 1 268 1.019 0 0 0 NA NA NA
962 3 Brownsville 2 481 M Brownsville Barcelona 1 262 0.965 NA NA NA 0 33 0.0000000
963 3 Brownsville 2 482 F Brownsville Brownsville 1 284 NA 21 24 45 NA NA NA
964 3 Brownsville 2 482 M Brownsville Brownsville 1 250 1.086 NA NA NA 48 10 0.8275862
965 3 Dahomey 2 483 F Dahomey Brownsville 1 270 0.986 23 35 58 NA NA NA
966 3 Brownsville 2 483 M Brownsville Dahomey 0 NA NA NA NA NA 0 0 0.0000000
967 3 Israel 2 484 F Israel Brownsville 0 NA NA 0 0 0 NA NA NA
968 3 Brownsville 2 484 M Brownsville Israel 0 NA NA NA NA NA 0 0 0.0000000
969 3 Sweden 2 485 F Sweden Brownsville 1 249 NA 0 0 0 NA NA NA
970 3 Brownsville 2 485 M Brownsville Sweden 0 NA NA NA NA NA 0 0 0.0000000
971 3 Barcelona 2 486 F Barcelona Dahomey 0 NA NA 0 0 0 NA NA NA
972 3 Dahomey 2 486 M Dahomey Barcelona 0 NA NA NA NA NA 0 0 0.0000000
973 3 Brownsville 2 487 F Brownsville Dahomey 1 266 1.133 0 0 0 NA NA NA
974 3 Dahomey 2 487 M Dahomey Brownsville 1 248 NA NA NA NA 0 0 0.0000000
975 3 Dahomey 2 488 F Dahomey Dahomey 1 264 1.075 10 11 21 NA NA NA
976 3 Dahomey 2 488 M Dahomey Dahomey 1 265 0.992 NA NA NA 0 12 0.0000000
977 3 Israel 2 489 F Israel Dahomey 1 NA NA 0 0 0 NA NA NA
978 3 Dahomey 2 489 M Dahomey Israel 1 NA 1.041 NA NA NA 89 18 0.8317757
979 3 Sweden 2 490 F Sweden Dahomey 0 NA NA 0 0 0 NA NA NA
980 3 Dahomey 2 490 M Dahomey Sweden 0 NA NA NA NA NA 0 0 0.0000000
981 3 Barcelona 2 491 F Barcelona Israel 1 NA NA NA NA NA NA NA NA
982 3 Israel 2 491 M Israel Barcelona 1 NA 0.883 NA NA NA 0 42 0.0000000
983 3 Brownsville 2 492 F Brownsville Israel 0 NA NA 0 0 0 NA NA NA
984 3 Israel 2 492 M Israel Brownsville 1 297 NA NA NA NA 0 0 0.0000000
985 3 Dahomey 2 493 F Dahomey Israel 0 NA NA 0 0 0 NA NA NA
986 3 Israel 2 493 M Israel Dahomey 1 264 NA NA NA NA 107 0 1.0000000
987 3 Israel 2 494 F Israel Israel 1 272 1.110 26 23 49 NA NA NA
988 3 Israel 2 494 M Israel Israel 1 268 0.999 NA NA NA 47 1 0.9791667
989 3 Sweden 2 495 F Sweden Israel 1 261 1.190 34 35 69 NA NA NA
990 3 Israel 2 495 M Israel Sweden 0 NA NA NA NA NA 0 0 0.0000000
1001 4 Barcelona 1 501 F Barcelona Barcelona 0 NA NA 0 0 0 NA NA NA
1002 4 Barcelona 1 501 M Barcelona Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1003 4 Brownsville 1 502 F Brownsville Barcelona 0 NA NA 0 0 0 NA NA NA
1004 4 Barcelona 1 502 M Barcelona Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1005 4 Dahomey 1 503 F Dahomey Barcelona 0 NA NA 0 0 0 NA NA NA
1006 4 Barcelona 1 503 M Barcelona Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1007 4 Israel 1 504 F Israel Barcelona 0 NA NA 0 0 0 NA NA NA
1008 4 Barcelona 1 504 M Barcelona Israel 0 NA NA NA NA NA 0 0 0.0000000
1009 4 Sweden 1 505 F Sweden Barcelona 0 NA NA 0 0 0 NA NA NA
1010 4 Barcelona 1 505 M Barcelona Sweden 1 247 0.939 NA NA NA 0 49 0.0000000
1011 4 Barcelona 1 506 F Barcelona Brownsville 0 NA NA 0 0 0 NA NA NA
1012 4 Brownsville 1 506 M Brownsville Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1013 4 Brownsville 1 507 F Brownsville Brownsville 0 NA NA 0 0 0 NA NA NA
1014 4 Brownsville 1 507 M Brownsville Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1015 4 Dahomey 1 508 F Dahomey Brownsville 0 NA NA 0 0 0 NA NA NA
1016 4 Brownsville 1 508 M Brownsville Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1017 4 Israel 1 509 F Israel Brownsville 0 NA NA 0 0 0 NA NA NA
1018 4 Brownsville 1 509 M Brownsville Israel 0 NA NA NA NA NA 0 0 0.0000000
1019 4 Sweden 1 510 F Sweden Brownsville 0 NA NA 0 0 0 NA NA NA
1020 4 Brownsville 1 510 M Brownsville Sweden 0 NA NA NA NA NA 0 0 0.0000000
1021 4 Barcelona 1 511 F Barcelona Dahomey 0 NA NA 0 0 0 NA NA NA
1022 4 Dahomey 1 511 M Dahomey Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1023 4 Brownsville 1 512 F Brownsville Dahomey 0 NA NA 0 0 0 NA NA NA
1024 4 Dahomey 1 512 M Dahomey Brownsville 1 246 0.879 NA NA NA 0 6 0.0000000
1025 4 Dahomey 1 513 F Dahomey Dahomey 0 NA NA 0 0 0 NA NA NA
1026 4 Dahomey 1 513 M Dahomey Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1027 4 Israel 1 514 F Israel Dahomey 0 NA NA 0 0 0 NA NA NA
1028 4 Dahomey 1 514 M Dahomey Israel 0 NA NA NA NA NA 0 0 0.0000000
1029 4 Sweden 1 515 F Sweden Dahomey 0 NA NA 0 0 0 NA NA NA
1030 4 Dahomey 1 515 M Dahomey Sweden 0 NA NA NA NA NA 0 0 0.0000000
1031 4 Barcelona 1 516 F Barcelona Israel 1 246 1.001 13 13 26 NA NA NA
1032 4 Israel 1 516 M Israel Barcelona 1 248 NA NA NA NA 0 0 0.0000000
1033 4 Brownsville 1 517 F Brownsville Israel 0 NA NA 0 0 0 NA NA NA
1034 4 Israel 1 517 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1035 4 Dahomey 1 518 F Dahomey Israel 0 NA NA 0 0 0 NA NA NA
1036 4 Israel 1 518 M Israel Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1037 4 Israel 1 519 F Israel Israel 1 246 NA 0 0 0 NA NA NA
1038 4 Israel 1 519 M Israel Israel 0 NA NA NA NA NA 0 0 0.0000000
1039 4 Sweden 1 520 F Sweden Israel 0 NA NA 0 0 0 NA NA NA
1040 4 Israel 1 520 M Israel Sweden 1 NA 1.059 NA NA NA 90 3 0.9677419
1041 4 Barcelona 1 521 F Barcelona Sweden 0 NA NA 0 0 0 NA NA NA
1042 4 Sweden 1 521 M Sweden Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1043 4 Brownsville 1 522 F Brownsville Sweden 0 NA NA 0 0 0 NA NA NA
1044 4 Sweden 1 522 M Sweden Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1045 4 Dahomey 1 523 F Dahomey Sweden 0 NA NA 0 0 0 NA NA NA
1046 4 Sweden 1 523 M Sweden Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1047 4 Israel 1 524 F Israel Sweden 1 247 NA 25 22 47 NA NA NA
1048 4 Sweden 1 524 M Sweden Israel 0 NA NA NA NA NA 0 0 0.0000000
1049 4 Sweden 1 525 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
1050 4 Sweden 1 525 M Sweden Sweden 0 NA NA NA NA NA 0 0 0.0000000
1051 4 Barcelona 1 526 F Barcelona Barcelona 0 NA NA 0 0 0 NA NA NA
1052 4 Barcelona 1 526 M Barcelona Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1053 4 Brownsville 1 527 F Brownsville Barcelona 0 NA NA 0 0 0 NA NA NA
1054 4 Barcelona 1 527 M Barcelona Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1055 4 Dahomey 1 528 F Dahomey Barcelona 0 NA NA 0 0 0 NA NA NA
1056 4 Barcelona 1 528 M Barcelona Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1057 4 Israel 1 529 F Israel Barcelona 0 NA NA 0 0 0 NA NA NA
1058 4 Barcelona 1 529 M Barcelona Israel 0 NA NA NA NA NA 0 0 0.0000000
1059 4 Sweden 1 530 F Sweden Barcelona 1 271 NA 0 0 0 NA NA NA
1060 4 Barcelona 1 530 M Barcelona Sweden 1 271 NA NA NA NA 0 0 0.0000000
1063 4 Brownsville 1 532 F Brownsville Brownsville 0 NA NA 0 0 0 NA NA NA
1064 4 Brownsville 1 532 M Brownsville Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1065 4 Dahomey 1 533 F Dahomey Brownsville 0 NA NA 0 0 0 NA NA NA
1066 4 Brownsville 1 533 M Brownsville Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1067 4 Israel 1 534 F Israel Brownsville 1 244 NA 0 0 0 NA NA NA
1068 4 Brownsville 1 534 M Brownsville Israel 0 NA NA NA NA NA 0 0 0.0000000
1069 4 Sweden 1 535 F Sweden Brownsville 0 NA NA 0 0 0 NA NA NA
1070 4 Brownsville 1 535 M Brownsville Sweden 0 NA NA NA NA NA 0 0 0.0000000
1071 4 Barcelona 1 536 F Barcelona Dahomey 0 NA NA 0 0 0 NA NA NA
1072 4 Dahomey 1 536 M Dahomey Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1073 4 Brownsville 1 537 F Brownsville Dahomey 0 NA NA 0 0 0 NA NA NA
1074 4 Dahomey 1 537 M Dahomey Brownsville 1 244 1.130 NA NA NA NA NA 0.9756098
1075 4 Dahomey 1 538 F Dahomey Dahomey 0 NA NA 0 0 0 NA NA NA
1076 4 Dahomey 1 538 M Dahomey Dahomey 1 240 1.055 NA NA NA 22 18 0.5500000
1077 4 Israel 1 539 F Israel Dahomey 0 NA NA 0 0 0 NA NA NA
1078 4 Dahomey 1 539 M Dahomey Israel 0 NA NA NA NA NA 0 0 0.0000000
1079 4 Sweden 1 540 F Sweden Dahomey 1 NA 0.870 21 14 35 NA NA NA
1080 4 Dahomey 1 540 M Dahomey Sweden 0 NA NA NA NA NA 0 0 0.0000000
1081 4 Barcelona 1 541 F Barcelona Israel 0 NA NA 0 0 0 NA NA NA
1082 4 Israel 1 541 M Israel Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1083 4 Brownsville 1 542 F Brownsville Israel 0 NA NA 0 0 0 NA NA NA
1084 4 Israel 1 542 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1085 4 Dahomey 1 543 F Dahomey Israel 0 NA NA 0 0 0 NA NA NA
1086 4 Israel 1 543 M Israel Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1087 4 Israel 1 544 F Israel Israel 0 NA NA 0 0 0 NA NA NA
1088 4 Israel 1 544 M Israel Israel 0 NA NA NA NA NA 0 0 0.0000000
1089 4 Sweden 1 545 F Sweden Israel 0 NA NA 0 0 0 NA NA NA
1090 4 Israel 1 545 M Israel Sweden 0 NA NA NA NA NA 0 0 0.0000000
1093 4 Brownsville 1 547 F Brownsville Sweden 1 253 0.982 20 22 42 NA NA NA
1094 4 Sweden 1 547 M Sweden Brownsville 1 263 0.897 NA NA NA 0 43 0.0000000
1095 4 Dahomey 1 548 F Dahomey Sweden 1 263 1.042 23 31 54 NA NA NA
1096 4 Sweden 1 548 M Sweden Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1097 4 Israel 1 549 F Israel Sweden 0 NA NA 0 0 0 NA NA NA
1098 4 Sweden 1 549 M Sweden Israel 1 264 0.890 NA NA NA NA NA 0.0000000
1099 4 Sweden 1 550 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
1100 4 Sweden 1 550 M Sweden Sweden 0 NA NA NA NA NA 0 0 0.0000000
1101 4 Barcelona 1 551 F Barcelona Barcelona 0 NA NA 0 0 0 NA NA NA
1102 4 Barcelona 1 551 M Barcelona Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1103 4 Brownsville 1 552 F Brownsville Barcelona 0 NA NA 0 0 0 NA NA NA
1104 4 Barcelona 1 552 M Barcelona Brownsville 1 247 NA NA NA NA 0 0 0.0000000
1105 4 Dahomey 1 553 F Dahomey Barcelona 0 NA NA 0 0 0 NA NA NA
1106 4 Barcelona 1 553 M Barcelona Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1107 4 Israel 1 554 F Israel Barcelona 0 NA NA 0 0 0 NA NA NA
1108 4 Barcelona 1 554 M Barcelona Israel 0 NA NA NA NA NA 0 0 0.0000000
1109 4 Sweden 1 555 F Sweden Barcelona 0 NA NA 0 0 0 NA NA NA
1110 4 Barcelona 1 555 M Barcelona Sweden 1 264 0.882 NA NA NA 0 32 0.0000000
1111 4 Barcelona 1 556 F Barcelona Brownsville 0 NA NA 0 0 0 NA NA NA
1112 4 Brownsville 1 556 M Brownsville Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1113 4 Brownsville 1 557 F Brownsville Brownsville 0 NA NA 0 0 0 NA NA NA
1114 4 Brownsville 1 557 M Brownsville Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1115 4 Dahomey 1 558 F Dahomey Brownsville 1 244 NA 0 0 0 NA NA NA
1116 4 Brownsville 1 558 M Brownsville Dahomey 1 NA NA NA NA NA 0 0 0.0000000
1117 4 Israel 1 559 F Israel Brownsville 1 NA 1.125 32 25 57 NA NA NA
1118 4 Brownsville 1 559 M Brownsville Israel 0 NA NA NA NA NA 0 0 0.0000000
1119 4 Sweden 1 560 F Sweden Brownsville 0 NA NA 0 0 0 NA NA NA
1120 4 Brownsville 1 560 M Brownsville Sweden 0 NA NA NA NA NA 0 0 0.0000000
1121 4 Barcelona 1 561 F Barcelona Dahomey 1 263 0.955 21 26 47 NA NA NA
1122 4 Dahomey 1 561 M Dahomey Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1123 4 Brownsville 1 562 F Brownsville Dahomey 0 NA NA 0 0 0 NA NA NA
1124 4 Dahomey 1 562 M Dahomey Brownsville 1 244 NA NA NA NA 0 30 0.0000000
1125 4 Dahomey 1 563 F Dahomey Dahomey 1 253 1.062 19 24 43 NA NA NA
1126 4 Dahomey 1 563 M Dahomey Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1127 4 Israel 1 564 F Israel Dahomey 0 NA NA 0 0 0 NA NA NA
1128 4 Dahomey 1 564 M Dahomey Israel 0 NA NA NA NA NA 0 0 0.0000000
1129 4 Sweden 1 565 F Sweden Dahomey 0 NA NA 0 0 0 NA NA NA
1130 4 Dahomey 1 565 M Dahomey Sweden 1 290 NA NA NA NA 0 41 0.0000000
1131 4 Barcelona 1 566 F Barcelona Israel 1 NA NA 0 0 0 NA NA NA
1132 4 Israel 1 566 M Israel Barcelona 1 NA 0.903 NA NA NA 0 80 0.0000000
1133 4 Brownsville 1 567 F Brownsville Israel 0 NA NA 0 0 0 NA NA NA
1134 4 Israel 1 567 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1135 4 Dahomey 1 568 F Dahomey Israel 1 245 1.121 44 35 79 NA NA NA
1136 4 Israel 1 568 M Israel Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1137 4 Israel 1 569 F Israel Israel 1 268 0.978 0 0 0 NA NA NA
1138 4 Israel 1 569 M Israel Israel 1 265 0.880 NA NA NA 0 84 0.0000000
1139 4 Sweden 1 570 F Sweden Israel 1 264 0.975 14 21 35 NA NA NA
1140 4 Israel 1 570 M Israel Sweden 1 252 0.933 NA NA NA 21 61 0.2560976
1141 4 Barcelona 1 571 F Barcelona Sweden 1 267 1.044 35 34 69 NA NA NA
1142 4 Sweden 1 571 M Sweden Barcelona 1 247 1.002 NA NA NA 125 0 1.0000000
1143 4 Brownsville 1 572 F Brownsville Sweden 0 NA NA 0 0 0 NA NA NA
1144 4 Sweden 1 572 M Sweden Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1145 4 Dahomey 1 573 F Dahomey Sweden 1 249 0.895 0 0 0 NA NA NA
1146 4 Sweden 1 573 M Sweden Dahomey 1 247 NA NA NA NA 0 0 0.0000000
1147 4 Israel 1 574 F Israel Sweden 1 248 NA 0 0 0 NA NA NA
1148 4 Sweden 1 574 M Sweden Israel 0 NA NA NA NA NA 0 0 0.0000000
1149 4 Sweden 1 575 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
1150 4 Sweden 1 575 M Sweden Sweden 1 250 0.913 NA NA NA 0 0 0.0000000
1151 4 Barcelona 1 576 F Barcelona Barcelona 0 NA NA 0 0 0 NA NA NA
1152 4 Barcelona 1 576 M Barcelona Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1153 4 Brownsville 1 577 F Brownsville Barcelona 0 NA NA 0 0 0 NA NA NA
1154 4 Barcelona 1 577 M Barcelona Brownsville 1 NA 1.159 NA NA NA 0 58 0.0000000
1155 4 Dahomey 1 578 F Dahomey Barcelona 1 270 NA 0 0 0 NA NA NA
1156 4 Barcelona 1 578 M Barcelona Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1157 4 Israel 1 579 F Israel Barcelona 1 NA 1.042 21 14 35 NA NA NA
1158 4 Barcelona 1 579 M Barcelona Israel 0 NA NA NA NA NA 0 0 0.0000000
1159 4 Sweden 1 580 F Sweden Barcelona 0 NA NA 0 0 0 NA NA NA
1160 4 Barcelona 1 580 M Barcelona Sweden 1 299 NA NA NA NA NA NA NA
1161 4 Barcelona 1 581 F Barcelona Brownsville 1 NA NA 20 21 41 NA NA NA
1162 4 Brownsville 1 581 M Brownsville Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1163 4 Brownsville 1 582 F Brownsville Brownsville 1 NA 1.014 19 7 26 NA NA NA
1164 4 Brownsville 1 582 M Brownsville Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1171 4 Barcelona 1 586 F Barcelona Dahomey 1 245 1.084 26 33 59 NA NA NA
1172 4 Dahomey 1 586 M Dahomey Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1173 4 Brownsville 1 587 F Brownsville Dahomey 0 NA NA 0 0 0 NA NA NA
1174 4 Dahomey 1 587 M Dahomey Brownsville 1 NA 0.995 NA NA NA 23 1 0.9583333
1175 4 Dahomey 1 588 F Dahomey Dahomey 1 NA 1.130 26 25 51 NA NA NA
1176 4 Dahomey 1 588 M Dahomey Dahomey 1 264 NA NA NA NA 0 40 0.0000000
1177 4 Israel 1 589 F Israel Dahomey 1 250 1.053 22 24 46 NA NA NA
1178 4 Dahomey 1 589 M Dahomey Israel 0 NA NA NA NA NA 0 0 0.0000000
1179 4 Sweden 1 590 F Sweden Dahomey 0 NA NA 0 0 0 NA NA NA
1180 4 Dahomey 1 590 M Dahomey Sweden 0 NA NA NA NA NA 0 0 0.0000000
1181 4 Barcelona 1 591 F Barcelona Israel 1 296 0.909 0 0 0 NA NA NA
1182 4 Israel 1 591 M Israel Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1183 4 Brownsville 1 592 F Brownsville Israel 0 NA NA 0 0 0 NA NA NA
1184 4 Israel 1 592 M Israel Brownsville 1 249 1.007 NA NA NA 0 64 0.0000000
1185 4 Dahomey 1 593 F Dahomey Israel 1 276 0.992 17 17 34 NA NA NA
1186 4 Israel 1 593 M Israel Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1187 4 Israel 1 594 F Israel Israel 1 252 0.975 20 24 44 NA NA NA
1188 4 Israel 1 594 M Israel Israel 0 NA NA NA NA NA 0 0 0.0000000
1189 4 Sweden 1 595 F Sweden Israel 0 NA NA 0 0 0 NA NA NA
1190 4 Israel 1 595 M Israel Sweden 0 NA NA NA NA NA 0 0 0.0000000
1191 4 Barcelona 1 596 F Barcelona Sweden 1 263 NA 0 0 0 NA NA NA
1192 4 Sweden 1 596 M Sweden Barcelona 1 263 NA NA NA NA 0 0 0.0000000
1193 4 Brownsville 1 597 F Brownsville Sweden 0 NA NA 0 0 0 NA NA NA
1194 4 Sweden 1 597 M Sweden Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1195 4 Dahomey 1 598 F Dahomey Sweden 1 251 1.076 22 25 47 NA NA NA
1196 4 Sweden 1 598 M Sweden Dahomey 1 268 0.878 NA NA NA 0 68 0.0000000
1197 4 Israel 1 599 F Israel Sweden 0 NA NA 0 0 0 NA NA NA
1198 4 Sweden 1 599 M Sweden Israel 1 266 0.922 NA NA NA 0 18 0.0000000
1199 4 Sweden 1 600 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
1200 4 Sweden 1 600 M Sweden Sweden 0 NA NA NA NA NA 0 0 0.0000000
1201 4 Barcelona 2 601 F Barcelona Barcelona 0 NA NA 0 0 0 NA NA NA
1202 4 Barcelona 2 601 M Barcelona Barcelona 1 251 0.918 NA NA NA 75 42 0.6410256
1203 4 Brownsville 2 602 F Brownsville Barcelona 1 264 1.016 25 18 43 NA NA NA
1204 4 Barcelona 2 602 M Barcelona Brownsville 1 252 NA NA NA NA 0 61 0.0000000
1205 4 Dahomey 2 603 F Dahomey Barcelona 0 NA NA 0 0 0 NA NA NA
1206 4 Barcelona 2 603 M Barcelona Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1207 4 Israel 2 604 F Israel Barcelona 1 247 NA 13 13 26 NA NA NA
1208 4 Barcelona 2 604 M Barcelona Israel 0 NA NA NA NA NA 0 0 0.0000000
1209 4 Sweden 2 605 F Sweden Barcelona 1 NA 0.904 16 16 32 NA NA NA
1210 4 Barcelona 2 605 M Barcelona Sweden 0 NA NA NA NA NA 0 0 0.0000000
1211 4 Barcelona 2 606 F Barcelona Brownsville 0 NA NA 0 0 0 NA NA NA
1212 4 Brownsville 2 606 M Brownsville Barcelona 1 NA 0.900 NA NA NA 0 82 0.0000000
1213 4 Brownsville 2 607 F Brownsville Brownsville 0 NA NA 0 0 0 NA NA NA
1214 4 Brownsville 2 607 M Brownsville Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1215 4 Dahomey 2 608 F Dahomey Brownsville 0 NA NA 0 0 0 NA NA NA
1216 4 Brownsville 2 608 M Brownsville Dahomey 1 269 0.896 NA NA NA 0 84 0.0000000
1217 4 Israel 2 609 F Israel Brownsville 1 274 NA 27 23 50 NA NA NA
1218 4 Brownsville 2 609 M Brownsville Israel 1 265 0.931 NA NA NA 0 61 0.0000000
1219 4 Sweden 2 610 F Sweden Brownsville 1 NA 1.073 0 0 0 NA NA NA
1220 4 Brownsville 2 610 M Brownsville Sweden 0 NA NA NA NA NA 0 0 0.0000000
1221 4 Barcelona 2 611 F Barcelona Dahomey 1 252 1.014 0 0 0 NA NA NA
1222 4 Dahomey 2 611 M Dahomey Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1223 4 Brownsville 2 612 F Brownsville Dahomey 0 NA NA 0 0 0 NA NA NA
1224 4 Dahomey 2 612 M Dahomey Brownsville 1 246 1.004 NA NA NA 0 89 0.0000000
1225 4 Dahomey 2 613 F Dahomey Dahomey 0 NA NA 0 0 0 NA NA NA
1226 4 Dahomey 2 613 M Dahomey Dahomey 1 244 1.037 NA NA NA 104 31 0.7703704
1227 4 Israel 2 614 F Israel Dahomey 1 246 1.060 23 15 38 NA NA NA
1228 4 Dahomey 2 614 M Dahomey Israel 0 NA NA NA NA NA 0 0 0.0000000
1229 4 Sweden 2 615 F Sweden Dahomey 1 269 1.042 29 29 58 NA NA NA
1230 4 Dahomey 2 615 M Dahomey Sweden 0 NA NA NA NA NA 0 0 0.0000000
1231 4 Barcelona 2 616 F Barcelona Israel 1 247 NA 0 0 0 NA NA NA
1232 4 Israel 2 616 M Israel Barcelona 1 244 1.007 NA NA NA 0 68 0.0000000
1233 4 Brownsville 2 617 F Brownsville Israel 1 245 1.045 20 25 45 NA NA NA
1234 4 Israel 2 617 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1235 4 Dahomey 2 618 F Dahomey Israel 0 NA NA 0 0 0 NA NA NA
1236 4 Israel 2 618 M Israel Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1237 4 Israel 2 619 F Israel Israel 0 NA NA 0 0 0 NA NA NA
1238 4 Israel 2 619 M Israel Israel 0 NA NA NA NA NA 0 0 0.0000000
1239 4 Sweden 2 620 F Sweden Israel 0 NA NA 0 0 0 NA NA NA
1240 4 Israel 2 620 M Israel Sweden 0 NA NA NA NA NA 0 0 0.0000000
1243 4 Brownsville 2 622 F Brownsville Sweden 0 NA NA 0 0 0 NA NA NA
1244 4 Sweden 2 622 M Sweden Brownsville 1 245 1.080 NA NA NA 149 0 1.0000000
1245 4 Dahomey 2 623 F Dahomey Sweden 0 NA NA 0 0 0 NA NA NA
1246 4 Sweden 2 623 M Sweden Dahomey 1 244 1.021 NA NA NA 125 0 1.0000000
1247 4 Israel 2 624 F Israel Sweden 0 NA NA 0 0 0 NA NA NA
1248 4 Sweden 2 624 M Sweden Israel 0 NA NA NA NA NA 0 0 0.0000000
1249 4 Sweden 2 625 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
1250 4 Sweden 2 625 M Sweden Sweden 0 NA NA NA NA NA 0 0 0.0000000
1251 4 Barcelona 2 626 F Barcelona Barcelona 0 NA NA 0 0 0 NA NA NA
1252 4 Barcelona 2 626 M Barcelona Barcelona 1 247 1.073 NA NA NA 161 1 0.9938272
1253 4 Brownsville 2 627 F Brownsville Barcelona 0 NA NA 0 0 0 NA NA NA
1254 4 Barcelona 2 627 M Barcelona Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1255 4 Dahomey 2 628 F Dahomey Barcelona 0 NA NA 0 0 0 NA NA NA
1256 4 Barcelona 2 628 M Barcelona Dahomey 1 264 NA NA NA NA 0 0 0.0000000
1257 4 Israel 2 629 F Israel Barcelona 0 NA NA 0 0 0 NA NA NA
1258 4 Barcelona 2 629 M Barcelona Israel 1 248 1.031 NA NA NA 0 30 0.0000000
1259 4 Sweden 2 630 F Sweden Barcelona 0 NA NA 0 0 0 NA NA NA
1260 4 Barcelona 2 630 M Barcelona Sweden 0 NA NA NA NA NA 0 0 0.0000000
1261 4 Barcelona 2 631 F Barcelona Brownsville 0 NA NA 0 0 0 NA NA NA
1262 4 Brownsville 2 631 M Brownsville Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1263 4 Brownsville 2 632 F Brownsville Brownsville 0 NA NA 0 0 0 NA NA NA
1264 4 Brownsville 2 632 M Brownsville Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1265 4 Dahomey 2 633 F Dahomey Brownsville 0 NA NA 0 0 0 NA NA NA
1266 4 Brownsville 2 633 M Brownsville Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1267 4 Israel 2 634 F Israel Brownsville 0 NA NA 0 0 0 NA NA NA
1268 4 Brownsville 2 634 M Brownsville Israel 1 248 NA NA NA NA 0 5 0.0000000
1269 4 Sweden 2 635 F Sweden Brownsville 0 NA NA 0 0 0 NA NA NA
1270 4 Brownsville 2 635 M Brownsville Sweden 0 NA NA NA NA NA 0 0 0.0000000
1271 4 Barcelona 2 636 F Barcelona Dahomey 0 NA NA 0 0 0 NA NA NA
1272 4 Dahomey 2 636 M Dahomey Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1273 4 Brownsville 2 637 F Brownsville Dahomey 0 NA NA 0 0 0 NA NA NA
1274 4 Dahomey 2 637 M Dahomey Brownsville 1 NA 0.878 NA NA NA 0 83 0.0000000
1275 4 Dahomey 2 638 F Dahomey Dahomey 0 NA NA 0 0 0 NA NA NA
1276 4 Dahomey 2 638 M Dahomey Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1277 4 Israel 2 639 F Israel Dahomey 0 NA NA 0 0 0 NA NA NA
1278 4 Dahomey 2 639 M Dahomey Israel 0 NA NA NA NA NA 0 0 0.0000000
1279 4 Sweden 2 640 F Sweden Dahomey 0 NA NA 0 0 0 NA NA NA
1280 4 Dahomey 2 640 M Dahomey Sweden 0 NA NA NA NA NA 0 0 0.0000000
1281 4 Barcelona 2 641 F Barcelona Israel 0 NA NA 0 0 0 NA NA NA
1282 4 Israel 2 641 M Israel Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1283 4 Brownsville 2 642 F Brownsville Israel 0 NA NA 0 0 0 NA NA NA
1284 4 Israel 2 642 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1285 4 Dahomey 2 643 F Dahomey Israel 0 NA NA 0 0 0 NA NA NA
1286 4 Israel 2 643 M Israel Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1287 4 Israel 2 644 F Israel Israel 1 NA 1.045 34 24 58 NA NA NA
1288 4 Israel 2 644 M Israel Israel 1 246 NA NA NA NA 0 0 0.0000000
1289 4 Sweden 2 645 F Sweden Israel 0 NA NA 0 0 0 NA NA NA
1290 4 Israel 2 645 M Israel Sweden 0 NA NA NA NA NA 0 0 0.0000000
1291 4 Barcelona 2 646 F Barcelona Sweden 0 NA NA 0 0 0 NA NA NA
1292 4 Sweden 2 646 M Sweden Barcelona 1 266 1.047 NA NA NA 75 7 0.9146341
1295 4 Dahomey 2 648 F Dahomey Sweden 0 NA NA 0 0 0 NA NA NA
1296 4 Sweden 2 648 M Sweden Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1297 4 Israel 2 649 F Israel Sweden 1 249 1.024 23 25 48 NA NA NA
1298 4 Sweden 2 649 M Sweden Israel 0 NA NA NA NA NA 0 0 0.0000000
1299 4 Sweden 2 650 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
1300 4 Sweden 2 650 M Sweden Sweden 0 NA NA NA NA NA 0 0 0.0000000
1301 4 Barcelona 2 651 F Barcelona Barcelona 0 NA NA 0 0 0 NA NA NA
1302 4 Barcelona 2 651 M Barcelona Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1303 4 Brownsville 2 652 F Brownsville Barcelona 0 NA NA 0 0 0 NA NA NA
1304 4 Barcelona 2 652 M Barcelona Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1305 4 Dahomey 2 653 F Dahomey Barcelona 0 NA NA 0 0 0 NA NA NA
1306 4 Barcelona 2 653 M Barcelona Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1307 4 Israel 2 654 F Israel Barcelona 0 NA NA 0 0 0 NA NA NA
1308 4 Barcelona 2 654 M Barcelona Israel 0 NA NA NA NA NA 0 0 0.0000000
1309 4 Sweden 2 655 F Sweden Barcelona 0 NA NA 0 0 0 NA NA NA
1310 4 Barcelona 2 655 M Barcelona Sweden 0 NA NA NA NA NA 0 0 0.0000000
1311 4 Barcelona 2 656 F Barcelona Brownsville 0 NA NA 0 0 0 NA NA NA
1312 4 Brownsville 2 656 M Brownsville Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1313 4 Brownsville 2 657 F Brownsville Brownsville 0 NA NA 0 0 0 NA NA NA
1314 4 Brownsville 2 657 M Brownsville Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1315 4 Dahomey 2 658 F Dahomey Brownsville 0 NA NA 0 0 0 NA NA NA
1316 4 Brownsville 2 658 M Brownsville Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1317 4 Israel 2 659 F Israel Brownsville 0 NA NA 0 0 0 NA NA NA
1318 4 Brownsville 2 659 M Brownsville Israel 0 NA NA NA NA NA 0 0 0.0000000
1319 4 Sweden 2 660 F Sweden Brownsville 0 NA NA 0 0 0 NA NA NA
1320 4 Brownsville 2 660 M Brownsville Sweden 0 NA NA NA NA NA 0 0 0.0000000
1321 4 Barcelona 2 661 F Barcelona Dahomey 0 NA NA 0 0 0 NA NA NA
1322 4 Dahomey 2 661 M Dahomey Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1323 4 Brownsville 2 662 F Brownsville Dahomey 0 NA NA 0 0 0 NA NA NA
1324 4 Dahomey 2 662 M Dahomey Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1325 4 Dahomey 2 663 F Dahomey Dahomey 1 263 0.967 20 21 41 NA NA NA
1326 4 Dahomey 2 663 M Dahomey Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1327 4 Israel 2 664 F Israel Dahomey 0 NA NA 0 0 0 NA NA NA
1328 4 Dahomey 2 664 M Dahomey Israel 0 NA NA NA NA NA 0 0 0.0000000
1329 4 Sweden 2 665 F Sweden Dahomey 0 NA NA 0 0 0 NA NA NA
1330 4 Dahomey 2 665 M Dahomey Sweden 0 NA NA NA NA NA 0 0 0.0000000
1331 4 Barcelona 2 666 F Barcelona Israel 0 NA NA 0 0 0 NA NA NA
1332 4 Israel 2 666 M Israel Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1333 4 Brownsville 2 667 F Brownsville Israel 0 NA NA 0 0 0 NA NA NA
1334 4 Israel 2 667 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1335 4 Dahomey 2 668 F Dahomey Israel 0 NA NA 0 0 0 NA NA NA
1336 4 Israel 2 668 M Israel Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1337 4 Israel 2 669 F Israel Israel 1 250 1.038 24 16 40 NA NA NA
1338 4 Israel 2 669 M Israel Israel 0 NA NA NA NA NA 0 0 0.0000000
1339 4 Sweden 2 670 F Sweden Israel 1 268 NA 0 0 0 NA NA NA
1340 4 Israel 2 670 M Israel Sweden 0 NA NA NA NA NA 0 0 0.0000000
1341 4 Barcelona 2 671 F Barcelona Sweden 0 NA NA 0 0 0 NA NA NA
1342 4 Sweden 2 671 M Sweden Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1343 4 Brownsville 2 672 F Brownsville Sweden 1 NA NA 0 0 0 NA NA NA
1344 4 Sweden 2 672 M Sweden Brownsville 1 NA NA NA NA NA NA NA NA
1345 4 Dahomey 2 673 F Dahomey Sweden 0 NA NA 0 0 0 NA NA NA
1346 4 Sweden 2 673 M Sweden Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1347 4 Israel 2 674 F Israel Sweden 0 NA NA 0 0 0 NA NA NA
1348 4 Sweden 2 674 M Sweden Israel 0 NA NA NA NA NA 0 0 0.0000000
1349 4 Sweden 2 675 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
1350 4 Sweden 2 675 M Sweden Sweden 0 NA NA NA NA NA 0 0 0.0000000
1351 4 Barcelona 2 676 F Barcelona Barcelona 1 250 NA 0 0 0 NA NA NA
1352 4 Barcelona 2 676 M Barcelona Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1353 4 Brownsville 2 677 F Brownsville Barcelona 0 NA NA 0 0 0 NA NA NA
1354 4 Barcelona 2 677 M Barcelona Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1355 4 Dahomey 2 678 F Dahomey Barcelona 0 NA NA 0 0 0 NA NA NA
1356 4 Barcelona 2 678 M Barcelona Dahomey 1 250 1.077 NA NA NA 103 0 1.0000000
1357 4 Israel 2 679 F Israel Barcelona 0 NA NA 0 0 0 NA NA NA
1358 4 Barcelona 2 679 M Barcelona Israel 0 NA NA NA NA NA 0 0 0.0000000
1359 4 Sweden 2 680 F Sweden Barcelona 0 NA NA 0 0 0 NA NA NA
1360 4 Barcelona 2 680 M Barcelona Sweden 0 NA NA NA NA NA 0 0 0.0000000
1361 4 Barcelona 2 681 F Barcelona Brownsville 1 264 0.963 11 6 17 NA NA NA
1362 4 Brownsville 2 681 M Brownsville Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1363 4 Brownsville 2 682 F Brownsville Brownsville 0 NA NA 0 0 0 NA NA NA
1364 4 Brownsville 2 682 M Brownsville Brownsville 1 265 0.841 NA NA NA 0 0 0.0000000
1365 4 Dahomey 2 683 F Dahomey Brownsville 0 NA NA 0 0 0 NA NA NA
1366 4 Brownsville 2 683 M Brownsville Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1367 4 Israel 2 684 F Israel Brownsville 0 NA NA 0 0 0 NA NA NA
1368 4 Brownsville 2 684 M Brownsville Israel 0 NA NA NA NA NA 0 0 0.0000000
1369 4 Sweden 2 685 F Sweden Brownsville 1 NA 1.005 4 3 7 NA NA NA
1370 4 Brownsville 2 685 M Brownsville Sweden 0 NA NA NA NA NA 0 0 0.0000000
1371 4 Barcelona 2 686 F Barcelona Dahomey 0 NA NA 0 0 0 NA NA NA
1372 4 Dahomey 2 686 M Dahomey Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1373 4 Brownsville 2 687 F Brownsville Dahomey 0 NA NA 0 0 0 NA NA NA
1374 4 Dahomey 2 687 M Dahomey Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1375 4 Dahomey 2 688 F Dahomey Dahomey 0 NA NA 0 0 0 NA NA NA
1376 4 Dahomey 2 688 M Dahomey Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1377 4 Israel 2 689 F Israel Dahomey 0 NA NA 0 0 0 NA NA NA
1378 4 Dahomey 2 689 M Dahomey Israel 0 NA NA NA NA NA 0 0 0.0000000
1381 4 Barcelona 2 691 F Barcelona Israel 1 275 NA 0 0 0 NA NA NA
1382 4 Israel 2 691 M Israel Barcelona 1 251 1.061 NA NA NA 33 0 1.0000000
1383 4 Brownsville 2 692 F Brownsville Israel 0 NA NA 0 0 0 NA NA NA
1384 4 Israel 2 692 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1385 4 Dahomey 2 693 F Dahomey Israel 0 NA NA 0 0 0 NA NA NA
1386 4 Israel 2 693 M Israel Dahomey 1 NA 0.957 NA NA NA 146 1 0.9931973
1387 4 Israel 2 694 F Israel Israel 1 248 NA 0 0 0 NA NA NA
1388 4 Israel 2 694 M Israel Israel 0 NA NA NA NA NA 0 0 0.0000000
1389 4 Sweden 2 695 F Sweden Israel 0 NA NA 0 0 0 NA NA NA
1390 4 Israel 2 695 M Israel Sweden 0 NA NA NA NA NA 0 0 0.0000000
1391 4 Barcelona 2 696 F Barcelona Sweden 0 NA NA 0 0 0 NA NA NA
1392 4 Sweden 2 696 M Sweden Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1393 4 Brownsville 2 697 F Brownsville Sweden 0 NA NA 0 0 0 NA NA NA
1394 4 Sweden 2 697 M Sweden Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1395 4 Dahomey 2 698 F Dahomey Sweden 0 NA NA 0 0 0 NA NA NA
1396 4 Sweden 2 698 M Sweden Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1397 4 Israel 2 699 F Israel Sweden 0 NA NA 0 0 0 NA NA NA
1398 4 Sweden 2 699 M Sweden Israel 0 NA NA NA NA NA 0 0 0.0000000
1399 4 Sweden 2 700 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
1400 4 Sweden 2 700 M Sweden Sweden 0 NA NA NA NA NA 0 0 0.0000000
1401 5 Barcelona 1 701 F Barcelona Barcelona 0 NA NA 0 0 0 NA NA NA
1402 5 Barcelona 1 701 M Barcelona Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1403 5 Brownsville 1 702 F Brownsville Barcelona 0 NA NA 0 0 0 NA NA NA
1404 5 Barcelona 1 702 M Barcelona Brownsville 1 286 0.751 NA NA NA 0 46 0.0000000
1405 5 Dahomey 1 703 F Dahomey Barcelona 0 NA NA 0 0 0 NA NA NA
1406 5 Barcelona 1 703 M Barcelona Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1407 5 Israel 1 704 F Israel Barcelona 0 NA NA 0 0 0 NA NA NA
1408 5 Barcelona 1 704 M Barcelona Israel 0 NA NA NA NA NA 0 0 0.0000000
1409 5 Sweden 1 705 F Sweden Barcelona 0 NA NA 0 0 0 NA NA NA
1410 5 Barcelona 1 705 M Barcelona Sweden 0 NA NA NA NA NA 0 0 0.0000000
1411 5 Barcelona 1 706 F Barcelona Brownsville 1 267 NA NA NA NA NA NA NA
1412 5 Brownsville 1 706 M Brownsville Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1413 5 Brownsville 1 707 F Brownsville Brownsville 0 NA NA 0 0 0 NA NA NA
1414 5 Brownsville 1 707 M Brownsville Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1415 5 Dahomey 1 708 F Dahomey Brownsville 0 NA NA 0 0 0 NA NA NA
1416 5 Brownsville 1 708 M Brownsville Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1417 5 Israel 1 709 F Israel Brownsville 0 NA NA 0 0 0 NA NA NA
1418 5 Brownsville 1 709 M Brownsville Israel 0 NA NA NA NA NA 0 0 0.0000000
1419 5 Sweden 1 710 F Sweden Brownsville 0 NA NA 0 0 0 NA NA NA
1420 5 Brownsville 1 710 M Brownsville Sweden 0 NA NA NA NA NA 0 0 0.0000000
1421 5 Barcelona 1 711 F Barcelona Dahomey 1 280 NA 0 0 0 NA NA NA
1422 5 Dahomey 1 711 M Dahomey Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1423 5 Brownsville 1 712 F Brownsville Dahomey 1 284 NA 1 0 1 NA NA NA
1424 5 Dahomey 1 712 M Dahomey Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1425 5 Dahomey 1 713 F Dahomey Dahomey 0 NA NA 0 0 0 NA NA NA
1426 5 Dahomey 1 713 M Dahomey Dahomey 1 237 0.963 NA NA NA 0 14 0.0000000
1427 5 Israel 1 714 F Israel Dahomey 0 NA NA 0 0 0 NA NA NA
1428 5 Dahomey 1 714 M Dahomey Israel 0 NA NA NA NA NA 0 0 0.0000000
1429 5 Sweden 1 715 F Sweden Dahomey 1 268 1.071 25 20 45 NA NA NA
1430 5 Dahomey 1 715 M Dahomey Sweden 0 NA NA NA NA NA 0 0 0.0000000
1431 5 Barcelona 1 716 F Barcelona Israel 0 NA NA 0 0 0 NA NA NA
1432 5 Israel 1 716 M Israel Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1433 5 Brownsville 1 717 F Brownsville Israel 0 NA NA 0 0 0 NA NA NA
1434 5 Israel 1 717 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1435 5 Dahomey 1 718 F Dahomey Israel 1 257 1.016 24 30 54 NA NA NA
1436 5 Israel 1 718 M Israel Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1437 5 Israel 1 719 F Israel Israel 0 NA NA 0 0 0 NA NA NA
1438 5 Israel 1 719 M Israel Israel 1 278 0.862 NA NA NA 0 47 0.0000000
1439 5 Sweden 1 720 F Sweden Israel 0 NA NA 0 0 0 NA NA NA
1440 5 Israel 1 720 M Israel Sweden 1 263 1.011 NA NA NA 0 27 0.0000000
1441 5 Barcelona 1 721 F Barcelona Sweden 1 281 0.901 5 5 10 NA NA NA
1442 5 Sweden 1 721 M Sweden Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1443 5 Brownsville 1 722 F Brownsville Sweden 1 283 0.918 17 16 33 NA NA NA
1444 5 Sweden 1 722 M Sweden Brownsville 1 278 0.890 NA NA NA 0 27 0.0000000
1445 5 Dahomey 1 723 F Dahomey Sweden 0 NA NA 0 0 0 NA NA NA
1446 5 Sweden 1 723 M Sweden Dahomey 1 270 1.036 NA NA NA 23 9 0.7187500
1447 5 Israel 1 724 F Israel Sweden 0 NA NA 0 0 0 NA NA NA
1448 5 Sweden 1 724 M Sweden Israel 0 NA NA NA NA NA 0 0 0.0000000
1449 5 Sweden 1 725 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
1450 5 Sweden 1 725 M Sweden Sweden 0 NA NA NA NA NA 0 0 0.0000000
1451 5 Barcelona 1 726 F Barcelona Barcelona 0 NA NA 0 0 0 NA NA NA
1452 5 Barcelona 1 726 M Barcelona Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1453 5 Brownsville 1 727 F Brownsville Barcelona 0 NA NA 0 0 0 NA NA NA
1454 5 Barcelona 1 727 M Barcelona Brownsville 1 258 1.038 NA NA NA 0 65 0.0000000
1455 5 Dahomey 1 728 F Dahomey Barcelona 0 NA NA 0 0 0 NA NA NA
1456 5 Barcelona 1 728 M Barcelona Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1457 5 Israel 1 729 F Israel Barcelona 0 NA NA 0 0 0 NA NA NA
1458 5 Barcelona 1 729 M Barcelona Israel 1 264 0.998 NA NA NA 0 18 0.0000000
1459 5 Sweden 1 730 F Sweden Barcelona 0 NA NA 0 0 0 NA NA NA
1460 5 Barcelona 1 730 M Barcelona Sweden 1 267 NA NA NA NA 0 20 0.0000000
1463 5 Brownsville 1 732 F Brownsville Brownsville 0 NA NA 0 0 0 NA NA NA
1464 5 Brownsville 1 732 M Brownsville Brownsville 1 279 0.907 NA NA NA 0 56 0.0000000
1465 5 Dahomey 1 733 F Dahomey Brownsville 0 NA NA 0 0 0 NA NA NA
1466 5 Brownsville 1 733 M Brownsville Dahomey 1 272 0.944 NA NA NA 0 12 0.0000000
1467 5 Israel 1 734 F Israel Brownsville 0 NA NA 0 0 0 NA NA NA
1468 5 Brownsville 1 734 M Brownsville Israel 0 NA NA NA NA NA 0 0 0.0000000
1469 5 Sweden 1 735 F Sweden Brownsville 0 NA NA 0 0 0 NA NA NA
1470 5 Brownsville 1 735 M Brownsville Sweden 1 243 NA NA NA NA 0 0 0.0000000
1471 5 Barcelona 1 736 F Barcelona Dahomey 0 NA NA 0 0 0 NA NA NA
1472 5 Dahomey 1 736 M Dahomey Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1473 5 Brownsville 1 737 F Brownsville Dahomey 1 280 NA 1 1 2 NA NA NA
1474 5 Dahomey 1 737 M Dahomey Brownsville 1 287 NA NA NA NA 0 86 0.0000000
1475 5 Dahomey 1 738 F Dahomey Dahomey 0 NA NA 0 0 0 NA NA NA
1476 5 Dahomey 1 738 M Dahomey Dahomey 1 249 1.007 NA NA NA 0 15 0.0000000
1477 5 Israel 1 739 F Israel Dahomey 1 251 1.113 34 30 64 NA NA NA
1478 5 Dahomey 1 739 M Dahomey Israel 0 NA NA NA NA NA 0 0 0.0000000
1479 5 Sweden 1 740 F Sweden Dahomey 0 NA NA 0 0 0 NA NA NA
1480 5 Dahomey 1 740 M Dahomey Sweden 0 NA NA NA NA NA 0 0 0.0000000
1481 5 Barcelona 1 741 F Barcelona Israel 1 264 0.979 16 18 34 NA NA NA
1482 5 Israel 1 741 M Israel Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1483 5 Brownsville 1 742 F Brownsville Israel 1 279 NA 0 0 0 NA NA NA
1484 5 Israel 1 742 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1487 5 Israel 1 744 F Israel Israel 0 NA NA 0 0 0 NA NA NA
1488 5 Israel 1 744 M Israel Israel 0 NA NA NA NA NA 0 0 0.0000000
1489 5 Sweden 1 745 F Sweden Israel 0 NA NA 0 0 0 NA NA NA
1490 5 Israel 1 745 M Israel Sweden 1 245 1.140 NA NA NA 120 8 0.9375000
1491 5 Barcelona 1 746 F Barcelona Sweden 1 267 1.045 17 21 38 NA NA NA
1492 5 Sweden 1 746 M Sweden Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1493 5 Brownsville 1 747 F Brownsville Sweden 1 239 1.143 19 28 47 NA NA NA
1494 5 Sweden 1 747 M Sweden Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1495 5 Dahomey 1 748 F Dahomey Sweden 1 282 0.976 5 9 14 NA NA NA
1496 5 Sweden 1 748 M Sweden Dahomey 1 252 1.047 NA NA NA 21 7 0.7500000
1497 5 Israel 1 749 F Israel Sweden 0 NA NA 0 0 0 NA NA NA
1498 5 Sweden 1 749 M Sweden Israel 0 NA NA NA NA NA 0 0 0.0000000
1499 5 Sweden 1 750 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
1500 5 Sweden 1 750 M Sweden Sweden 0 NA NA NA NA NA 0 0 0.0000000
1501 5 Barcelona 2 751 F Barcelona Barcelona 1 240 1.053 10 18 28 NA NA NA
1502 5 Barcelona 2 751 M Barcelona Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1503 5 Brownsville 2 752 F Brownsville Barcelona 0 NA NA 0 0 0 NA NA NA
1504 5 Barcelona 2 752 M Barcelona Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1505 5 Dahomey 2 753 F Dahomey Barcelona 0 NA NA 0 0 0 NA NA NA
1506 5 Barcelona 2 753 M Barcelona Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1507 5 Israel 2 754 F Israel Barcelona 1 260 NA 28 24 52 NA NA NA
1508 5 Barcelona 2 754 M Barcelona Israel 0 NA NA NA NA NA 0 0 0.0000000
1509 5 Sweden 2 755 F Sweden Barcelona 0 NA NA 0 0 0 NA NA NA
1510 5 Barcelona 2 755 M Barcelona Sweden 1 250 1.024 NA NA NA 10 0 1.0000000
1511 5 Barcelona 2 756 F Barcelona Brownsville 0 NA NA 0 0 0 NA NA NA
1512 5 Brownsville 2 756 M Brownsville Barcelona 1 257 NA NA NA NA 0 0 0.0000000
1513 5 Brownsville 2 757 F Brownsville Brownsville 0 NA NA 0 0 0 NA NA NA
1514 5 Brownsville 2 757 M Brownsville Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1515 5 Dahomey 2 758 F Dahomey Brownsville 0 NA NA 0 0 0 NA NA NA
1516 5 Brownsville 2 758 M Brownsville Dahomey 1 259 1.084 NA NA NA 0 0 0.0000000
1517 5 Israel 2 759 F Israel Brownsville 1 259 NA 0 0 0 NA NA NA
1518 5 Brownsville 2 759 M Brownsville Israel 0 NA NA NA NA NA 0 0 0.0000000
1519 5 Sweden 2 760 F Sweden Brownsville 0 NA NA 0 0 0 NA NA NA
1520 5 Brownsville 2 760 M Brownsville Sweden 1 259 1.042 NA NA NA 0 88 0.0000000
1521 5 Barcelona 2 761 F Barcelona Dahomey 1 288 0.869 0 0 0 NA NA NA
1522 5 Dahomey 2 761 M Dahomey Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1523 5 Brownsville 2 762 F Brownsville Dahomey 1 267 1.209 24 38 62 NA NA NA
1524 5 Dahomey 2 762 M Dahomey Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1525 5 Dahomey 2 763 F Dahomey Dahomey 0 NA NA 0 0 0 NA NA NA
1526 5 Dahomey 2 763 M Dahomey Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1527 5 Israel 2 764 F Israel Dahomey 0 NA NA 0 0 0 NA NA NA
1528 5 Dahomey 2 764 M Dahomey Israel 0 NA NA NA NA NA 0 0 0.0000000
1529 5 Sweden 2 765 F Sweden Dahomey 0 NA NA 0 0 0 NA NA NA
1530 5 Dahomey 2 765 M Dahomey Sweden 0 NA NA NA NA NA 0 0 0.0000000
1531 5 Barcelona 2 766 F Barcelona Israel 0 NA NA 0 0 0 NA NA NA
1532 5 Israel 2 766 M Israel Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1533 5 Brownsville 2 767 F Brownsville Israel 0 NA NA 0 0 0 NA NA NA
1534 5 Israel 2 767 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1535 5 Dahomey 2 768 F Dahomey Israel 1 245 1.178 37 29 66 NA NA NA
1536 5 Israel 2 768 M Israel Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1537 5 Israel 2 769 F Israel Israel 1 247 1.221 38 25 63 NA NA NA
1538 5 Israel 2 769 M Israel Israel 0 NA NA NA NA NA 0 0 0.0000000
1539 5 Sweden 2 770 F Sweden Israel 0 NA NA 0 0 0 NA NA NA
1540 5 Israel 2 770 M Israel Sweden 0 NA NA NA NA NA 0 0 0.0000000
1541 5 Barcelona 2 771 F Barcelona Sweden 0 NA NA 0 0 0 NA NA NA
1542 5 Sweden 2 771 M Sweden Barcelona 1 242 1.040 NA NA NA 12 64 0.1578947
1543 5 Brownsville 2 772 F Brownsville Sweden 0 NA NA 0 0 0 NA NA NA
1544 5 Sweden 2 772 M Sweden Brownsville 1 232 NA NA NA NA 50 6 0.8928571
1547 5 Israel 2 774 F Israel Sweden 0 NA NA 0 0 0 NA NA NA
1548 5 Sweden 2 774 M Sweden Israel 0 NA NA NA NA NA 0 0 0.0000000
1549 5 Sweden 2 775 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
1550 5 Sweden 2 775 M Sweden Sweden 1 262 0.971 NA NA NA 0 12 0.0000000
1551 5 Barcelona 2 776 F Barcelona Barcelona 0 NA NA 0 0 0 NA NA NA
1552 5 Barcelona 2 776 M Barcelona Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1553 5 Brownsville 2 777 F Brownsville Barcelona 0 NA NA 0 0 0 NA NA NA
1554 5 Barcelona 2 777 M Barcelona Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1555 5 Dahomey 2 778 F Dahomey Barcelona 0 NA NA 0 0 0 NA NA NA
1556 5 Barcelona 2 778 M Barcelona Dahomey 1 263 0.978 NA NA NA 116 37 0.7581699
1557 5 Israel 2 779 F Israel Barcelona 0 NA NA 0 0 0 NA NA NA
1558 5 Barcelona 2 779 M Barcelona Israel 0 NA NA NA NA NA 0 0 0.0000000
1559 5 Sweden 2 780 F Sweden Barcelona 0 NA NA 0 0 0 NA NA NA
1560 5 Barcelona 2 780 M Barcelona Sweden 1 270 1.011 NA NA NA 16 7 0.6956522
1561 5 Barcelona 2 781 F Barcelona Brownsville 0 NA NA 0 0 0 NA NA NA
1562 5 Brownsville 2 781 M Brownsville Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1563 5 Brownsville 2 782 F Brownsville Brownsville 0 NA NA 0 0 0 NA NA NA
1564 5 Brownsville 2 782 M Brownsville Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1565 5 Dahomey 2 783 F Dahomey Brownsville 0 NA NA 0 0 0 NA NA NA
1566 5 Brownsville 2 783 M Brownsville Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1567 5 Israel 2 784 F Israel Brownsville 0 NA NA 0 0 0 NA NA NA
1568 5 Brownsville 2 784 M Brownsville Israel 0 NA NA NA NA NA 0 0 0.0000000
1569 5 Sweden 2 785 F Sweden Brownsville 0 NA NA 0 0 0 NA NA NA
1570 5 Brownsville 2 785 M Brownsville Sweden 0 NA NA NA NA NA 0 0 0.0000000
1573 5 Brownsville 2 787 F Brownsville Dahomey 0 NA NA 0 0 0 NA NA NA
1574 5 Dahomey 2 787 M Dahomey Brownsville 1 275 0.823 NA NA NA 0 79 0.0000000
1575 5 Dahomey 2 788 F Dahomey Dahomey 0 NA NA 0 0 0 NA NA NA
1576 5 Dahomey 2 788 M Dahomey Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1577 5 Israel 2 789 F Israel Dahomey 0 NA NA 0 0 0 NA NA NA
1578 5 Dahomey 2 789 M Dahomey Israel 0 NA NA NA NA NA 0 0 0.0000000
1579 5 Sweden 2 790 F Sweden Dahomey 1 253 0.964 2 6 8 NA NA NA
1580 5 Dahomey 2 790 M Dahomey Sweden 1 273 0.902 NA NA NA 0 63 0.0000000
1581 5 Barcelona 2 791 F Barcelona Israel 0 NA NA 0 0 0 NA NA NA
1582 5 Israel 2 791 M Israel Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1583 5 Brownsville 2 792 F Brownsville Israel 0 NA NA 0 0 0 NA NA NA
1584 5 Israel 2 792 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1585 5 Dahomey 2 793 F Dahomey Israel 0 NA NA 0 0 0 NA NA NA
1586 5 Israel 2 793 M Israel Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1587 5 Israel 2 794 F Israel Israel 0 NA NA 0 0 0 NA NA NA
1588 5 Israel 2 794 M Israel Israel 0 NA NA NA NA NA 0 0 0.0000000
1589 5 Sweden 2 795 F Sweden Israel 0 NA NA 0 0 0 NA NA NA
1590 5 Israel 2 795 M Israel Sweden 0 NA NA NA NA NA 0 0 0.0000000
1591 5 Barcelona 2 796 F Barcelona Sweden 0 NA NA 0 0 0 NA NA NA
1592 5 Sweden 2 796 M Sweden Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1595 5 Dahomey 2 798 F Dahomey Sweden 0 NA NA 0 0 0 NA NA NA
1596 5 Sweden 2 798 M Sweden Dahomey 1 246 NA NA NA NA 69 0 1.0000000
1597 5 Israel 2 799 F Israel Sweden 0 NA NA 0 0 0 NA NA NA
1598 5 Sweden 2 799 M Sweden Israel 0 NA NA NA NA NA 0 0 0.0000000
1599 5 Sweden 2 800 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
1600 5 Sweden 2 800 M Sweden Sweden 0 NA NA NA NA NA 0 0 0.0000000
1601 5 Barcelona 1 801 F Barcelona Barcelona 0 NA NA 0 0 0 NA NA NA
1602 5 Barcelona 1 801 M Barcelona Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1603 5 Brownsville 1 802 F Brownsville Barcelona 1 280 NA 0 0 0 NA NA NA
1604 5 Barcelona 1 802 M Barcelona Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1605 5 Dahomey 1 803 F Dahomey Barcelona 0 NA NA 0 0 0 NA NA NA
1606 5 Barcelona 1 803 M Barcelona Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1607 5 Israel 1 804 F Israel Barcelona 0 NA NA 0 0 0 NA NA NA
1608 5 Barcelona 1 804 M Barcelona Israel 0 NA NA NA NA NA 0 0 0.0000000
1609 5 Sweden 1 805 F Sweden Barcelona 1 286 0.847 15 14 29 NA NA NA
1610 5 Barcelona 1 805 M Barcelona Sweden 0 NA NA NA NA NA 0 0 0.0000000
1611 5 Barcelona 1 806 F Barcelona Brownsville 0 NA NA 0 0 0 NA NA NA
1612 5 Brownsville 1 806 M Brownsville Barcelona 1 268 0.905 NA NA NA 0 11 0.0000000
1613 5 Brownsville 1 807 F Brownsville Brownsville 0 NA NA 0 0 0 NA NA NA
1614 5 Brownsville 1 807 M Brownsville Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1615 5 Dahomey 1 808 F Dahomey Brownsville 1 241 1.187 28 21 49 NA NA NA
1616 5 Brownsville 1 808 M Brownsville Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1617 5 Israel 1 809 F Israel Brownsville 1 272 0.926 16 22 38 NA NA NA
1618 5 Brownsville 1 809 M Brownsville Israel 0 NA NA NA NA NA 0 0 0.0000000
1619 5 Sweden 1 810 F Sweden Brownsville 0 NA NA 0 0 0 NA NA NA
1620 5 Brownsville 1 810 M Brownsville Sweden 1 260 1.010 NA NA NA 0 41 0.0000000
1621 5 Barcelona 1 811 F Barcelona Dahomey 1 263 0.979 20 20 40 NA NA NA
1622 5 Dahomey 1 811 M Dahomey Barcelona 1 259 0.988 NA NA NA 174 0 1.0000000
1623 5 Brownsville 1 812 F Brownsville Dahomey 1 246 1.078 14 14 28 NA NA NA
1624 5 Dahomey 1 812 M Dahomey Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1625 5 Dahomey 1 813 F Dahomey Dahomey 0 NA NA 0 0 0 NA NA NA
1626 5 Dahomey 1 813 M Dahomey Dahomey 1 246 0.989 NA NA NA 56 0 1.0000000
1627 5 Israel 1 814 F Israel Dahomey 0 NA NA 0 0 0 NA NA NA
1628 5 Dahomey 1 814 M Dahomey Israel 0 NA NA NA NA NA 0 0 0.0000000
1629 5 Sweden 1 815 F Sweden Dahomey 0 NA NA 0 0 0 NA NA NA
1630 5 Dahomey 1 815 M Dahomey Sweden 1 246 0.976 NA NA NA 116 9 0.9280000
1631 5 Barcelona 1 816 F Barcelona Israel 1 253 1.068 20 26 46 NA NA NA
1632 5 Israel 1 816 M Israel Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1633 5 Brownsville 1 817 F Brownsville Israel 0 NA NA 0 0 0 NA NA NA
1634 5 Israel 1 817 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1635 5 Dahomey 1 818 F Dahomey Israel 0 NA NA 0 0 0 NA NA NA
1636 5 Israel 1 818 M Israel Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1637 5 Israel 1 819 F Israel Israel 0 NA NA 0 0 0 NA NA NA
1638 5 Israel 1 819 M Israel Israel 1 280 NA NA NA NA 0 0 0.0000000
1639 5 Sweden 1 820 F Sweden Israel 0 NA NA 0 0 0 NA NA NA
1640 5 Israel 1 820 M Israel Sweden 0 NA NA NA NA NA 0 0 0.0000000
1641 5 Barcelona 1 821 F Barcelona Sweden 0 NA NA 0 0 0 NA NA NA
1642 5 Sweden 1 821 M Sweden Barcelona 1 274 0.912 NA NA NA 9 0 1.0000000
1643 5 Brownsville 1 822 F Brownsville Sweden 0 NA NA 0 0 0 NA NA NA
1644 5 Sweden 1 822 M Sweden Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1645 5 Dahomey 1 823 F Dahomey Sweden 0 NA NA 0 0 0 NA NA NA
1646 5 Sweden 1 823 M Sweden Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1647 5 Israel 1 824 F Israel Sweden 0 NA NA 0 0 0 NA NA NA
1648 5 Sweden 1 824 M Sweden Israel 1 263 0.939 NA NA NA 54 62 0.4655172
1649 5 Sweden 1 825 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
1650 5 Sweden 1 825 M Sweden Sweden 1 270 NA NA NA NA 0 0 0.0000000
1651 5 Barcelona 1 826 F Barcelona Barcelona 1 244 1.190 36 23 59 NA NA NA
1652 5 Barcelona 1 826 M Barcelona Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1653 5 Brownsville 1 827 F Brownsville Barcelona 1 280 1.027 17 23 40 NA NA NA
1654 5 Barcelona 1 827 M Barcelona Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1655 5 Dahomey 1 828 F Dahomey Barcelona 1 259 1.054 27 23 50 NA NA NA
1656 5 Barcelona 1 828 M Barcelona Dahomey 1 NA 0.983 NA NA NA 15 83 0.1530612
1657 5 Israel 1 829 F Israel Barcelona 1 252 1.089 28 36 64 NA NA NA
1658 5 Barcelona 1 829 M Barcelona Israel 0 NA NA NA NA NA 0 0 0.0000000
1659 5 Sweden 1 830 F Sweden Barcelona 0 NA NA 0 0 0 NA NA NA
1660 5 Barcelona 1 830 M Barcelona Sweden 0 NA NA NA NA NA 0 0 0.0000000
1661 5 Barcelona 1 831 F Barcelona Brownsville 0 NA NA 0 0 0 NA NA NA
1662 5 Brownsville 1 831 M Brownsville Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1663 5 Brownsville 1 832 F Brownsville Brownsville 0 NA NA 0 0 0 NA NA NA
1664 5 Brownsville 1 832 M Brownsville Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1665 5 Dahomey 1 833 F Dahomey Brownsville 0 NA NA 0 0 0 NA NA NA
1666 5 Brownsville 1 833 M Brownsville Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1667 5 Israel 1 834 F Israel Brownsville 0 NA NA 0 0 0 NA NA NA
1668 5 Brownsville 1 834 M Brownsville Israel 0 NA NA NA NA NA 0 0 0.0000000
1669 5 Sweden 1 835 F Sweden Brownsville 0 NA NA 0 0 0 NA NA NA
1670 5 Brownsville 1 835 M Brownsville Sweden 1 261 0.945 NA NA NA 0 89 0.0000000
1671 5 Barcelona 1 836 F Barcelona Dahomey 0 NA NA 0 0 0 NA NA NA
1672 5 Dahomey 1 836 M Dahomey Barcelona 1 249 0.984 NA NA NA 0 35 0.0000000
1673 5 Brownsville 1 837 F Brownsville Dahomey 1 251 1.013 23 13 36 NA NA NA
1674 5 Dahomey 1 837 M Dahomey Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1675 5 Dahomey 1 838 F Dahomey Dahomey 1 288 NA 0 0 0 NA NA NA
1676 5 Dahomey 1 838 M Dahomey Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1677 5 Israel 1 839 F Israel Dahomey 1 251 1.034 21 26 47 NA NA NA
1678 5 Dahomey 1 839 M Dahomey Israel 0 NA NA NA NA NA 0 0 0.0000000
1679 5 Sweden 1 840 F Sweden Dahomey 0 NA NA 0 0 0 NA NA NA
1680 5 Dahomey 1 840 M Dahomey Sweden 0 NA NA NA NA NA 0 0 0.0000000
1681 5 Barcelona 1 841 F Barcelona Israel 0 NA NA 0 0 0 NA NA NA
1682 5 Israel 1 841 M Israel Barcelona 1 252 0.969 NA NA NA 0 0 0.0000000
1683 5 Brownsville 1 842 F Brownsville Israel 0 NA NA 0 0 0 NA NA NA
1684 5 Israel 1 842 M Israel Brownsville 1 253 0.936 NA NA NA 32 47 0.4050633
1685 5 Dahomey 1 843 F Dahomey Israel 0 NA NA 0 0 0 NA NA NA
1686 5 Israel 1 843 M Israel Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1687 5 Israel 1 844 F Israel Israel 1 247 0.995 17 14 31 NA NA NA
1688 5 Israel 1 844 M Israel Israel 0 NA NA NA NA NA 0 0 0.0000000
1689 5 Sweden 1 845 F Sweden Israel 0 NA NA 0 0 0 NA NA NA
1690 5 Israel 1 845 M Israel Sweden 1 270 0.973 NA NA NA 0 74 0.0000000
1691 5 Barcelona 1 846 F Barcelona Sweden 1 238 1.023 27 21 48 NA NA NA
1692 5 Sweden 1 846 M Sweden Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1693 5 Brownsville 1 847 F Brownsville Sweden 0 NA NA 0 0 0 NA NA NA
1694 5 Sweden 1 847 M Sweden Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1695 5 Dahomey 1 848 F Dahomey Sweden 0 NA NA 0 0 0 NA NA NA
1696 5 Sweden 1 848 M Sweden Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1697 5 Israel 1 849 F Israel Sweden 1 274 0.962 0 0 0 NA NA NA
1698 5 Sweden 1 849 M Sweden Israel 1 270 0.880 NA NA NA 0 33 0.0000000
1699 5 Sweden 1 850 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
1700 5 Sweden 1 850 M Sweden Sweden 0 NA NA NA NA NA 0 0 0.0000000
1701 5 Barcelona 2 851 F Barcelona Barcelona 0 NA NA 0 0 0 NA NA NA
1702 5 Barcelona 2 851 M Barcelona Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1703 5 Brownsville 2 852 F Brownsville Barcelona 0 NA NA 0 0 0 NA NA NA
1704 5 Barcelona 2 852 M Barcelona Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1705 5 Dahomey 2 853 F Dahomey Barcelona 0 NA NA 0 0 0 NA NA NA
1706 5 Barcelona 2 853 M Barcelona Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1707 5 Israel 2 854 F Israel Barcelona 0 NA NA 0 0 0 NA NA NA
1708 5 Barcelona 2 854 M Barcelona Israel 0 NA NA NA NA NA 0 0 0.0000000
1709 5 Sweden 2 855 F Sweden Barcelona 1 273 0.967 9 11 20 NA NA NA
1710 5 Barcelona 2 855 M Barcelona Sweden 0 NA NA NA NA NA 0 0 0.0000000
1711 5 Barcelona 2 856 F Barcelona Brownsville 0 NA NA 0 0 0 NA NA NA
1712 5 Brownsville 2 856 M Brownsville Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1713 5 Brownsville 2 857 F Brownsville Brownsville 0 NA NA 0 0 0 NA NA NA
1714 5 Brownsville 2 857 M Brownsville Brownsville 1 269 0.928 NA NA NA 0 101 0.0000000
1715 5 Dahomey 2 858 F Dahomey Brownsville 0 NA NA 0 0 0 NA NA NA
1716 5 Brownsville 2 858 M Brownsville Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1717 5 Israel 2 859 F Israel Brownsville 0 NA NA 0 0 0 NA NA NA
1718 5 Brownsville 2 859 M Brownsville Israel 1 266 1.067 NA NA NA 0 52 0.0000000
1719 5 Sweden 2 860 F Sweden Brownsville 0 NA NA 0 0 0 NA NA NA
1720 5 Brownsville 2 860 M Brownsville Sweden 0 NA NA NA NA NA 0 0 0.0000000
1721 5 Barcelona 2 861 F Barcelona Dahomey 0 NA NA 0 0 0 NA NA NA
1722 5 Dahomey 2 861 M Dahomey Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1723 5 Brownsville 2 862 F Brownsville Dahomey 0 NA NA 0 0 0 NA NA NA
1724 5 Dahomey 2 862 M Dahomey Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1725 5 Dahomey 2 863 F Dahomey Dahomey 0 NA NA 0 0 0 NA NA NA
1726 5 Dahomey 2 863 M Dahomey Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1727 5 Israel 2 864 F Israel Dahomey 0 NA NA 0 0 0 NA NA NA
1728 5 Dahomey 2 864 M Dahomey Israel 1 271 0.782 NA NA NA 0 23 0.0000000
1729 5 Sweden 2 865 F Sweden Dahomey 0 NA NA 0 0 0 NA NA NA
1730 5 Dahomey 2 865 M Dahomey Sweden 1 281 1.017 NA NA NA 0 59 0.0000000
1731 5 Barcelona 2 866 F Barcelona Israel 0 NA NA 0 0 0 NA NA NA
1732 5 Israel 2 866 M Israel Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1733 5 Brownsville 2 867 F Brownsville Israel 0 NA NA 0 0 0 NA NA NA
1734 5 Israel 2 867 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1735 5 Dahomey 2 868 F Dahomey Israel 0 NA NA 0 0 0 NA NA NA
1736 5 Israel 2 868 M Israel Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1737 5 Israel 2 869 F Israel Israel 0 NA NA 0 0 0 NA NA NA
1738 5 Israel 2 869 M Israel Israel 0 NA NA NA NA NA 0 0 0.0000000
1739 5 Sweden 2 870 F Sweden Israel 1 281 NA 0 0 0 NA NA NA
1740 5 Israel 2 870 M Israel Sweden 0 NA NA NA NA NA 0 0 0.0000000
1741 5 Barcelona 2 871 F Barcelona Sweden 1 290 1.097 29 29 58 NA NA NA
1742 5 Sweden 2 871 M Sweden Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1743 5 Brownsville 2 872 F Brownsville Sweden 0 NA NA 0 0 0 NA NA NA
1744 5 Sweden 2 872 M Sweden Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1745 5 Dahomey 2 873 F Dahomey Sweden 0 NA NA 0 0 0 NA NA NA
1746 5 Sweden 2 873 M Sweden Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1747 5 Israel 2 874 F Israel Sweden 0 NA NA 0 0 0 NA NA NA
1748 5 Sweden 2 874 M Sweden Israel 0 NA NA NA NA NA 0 0 0.0000000
1749 5 Sweden 2 875 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
1750 5 Sweden 2 875 M Sweden Sweden 0 NA NA NA NA NA 0 0 0.0000000
1751 5 Barcelona 2 876 F Barcelona Barcelona 1 259 1.090 20 32 52 NA NA NA
1752 5 Barcelona 2 876 M Barcelona Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1753 5 Brownsville 2 877 F Brownsville Barcelona 1 277 NA 0 0 0 NA NA NA
1754 5 Barcelona 2 877 M Barcelona Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1755 5 Dahomey 2 878 F Dahomey Barcelona 1 250 NA 15 14 29 NA NA NA
1756 5 Barcelona 2 878 M Barcelona Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1757 5 Israel 2 879 F Israel Barcelona 0 NA NA 0 0 0 NA NA NA
1758 5 Barcelona 2 879 M Barcelona Israel 0 NA NA NA NA NA 0 0 0.0000000
1759 5 Sweden 2 880 F Sweden Barcelona 0 NA NA 0 0 0 NA NA NA
1760 5 Barcelona 2 880 M Barcelona Sweden 0 NA NA NA NA NA 0 0 0.0000000
1761 5 Barcelona 2 881 F Barcelona Brownsville 0 NA NA 0 0 0 NA NA NA
1762 5 Brownsville 2 881 M Brownsville Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1763 5 Brownsville 2 882 F Brownsville Brownsville 0 NA NA 0 0 0 NA NA NA
1764 5 Brownsville 2 882 M Brownsville Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1765 5 Dahomey 2 883 F Dahomey Brownsville 0 NA NA 0 0 0 NA NA NA
1766 5 Brownsville 2 883 M Brownsville Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1767 5 Israel 2 884 F Israel Brownsville 0 NA NA 0 0 0 NA NA NA
1768 5 Brownsville 2 884 M Brownsville Israel 0 NA NA NA NA NA 0 0 0.0000000
1769 5 Sweden 2 885 F Sweden Brownsville 0 NA NA 0 0 0 NA NA NA
1770 5 Brownsville 2 885 M Brownsville Sweden 1 285 0.926 NA NA NA 0 91 0.0000000
1771 5 Barcelona 2 886 F Barcelona Dahomey 0 NA NA 0 0 0 NA NA NA
1772 5 Dahomey 2 886 M Dahomey Barcelona 1 286 0.851 NA NA NA 0 18 0.0000000
1773 5 Brownsville 2 887 F Brownsville Dahomey 0 NA NA 0 0 0 NA NA NA
1774 5 Dahomey 2 887 M Dahomey Brownsville 1 276 0.821 NA NA NA 0 73 0.0000000
1775 5 Dahomey 2 888 F Dahomey Dahomey 1 272 NA 0 0 0 NA NA NA
1776 5 Dahomey 2 888 M Dahomey Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1777 5 Israel 2 889 F Israel Dahomey 0 NA NA 0 0 0 NA NA NA
1778 5 Dahomey 2 889 M Dahomey Israel 0 NA NA NA NA NA 0 0 0.0000000
1779 5 Sweden 2 890 F Sweden Dahomey 1 256 0.977 13 23 36 NA NA NA
1780 5 Dahomey 2 890 M Dahomey Sweden 0 NA NA NA NA NA 0 0 0.0000000
1781 5 Barcelona 2 891 F Barcelona Israel 1 272 1.056 0 0 0 NA NA NA
1782 5 Israel 2 891 M Israel Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1783 5 Brownsville 2 892 F Brownsville Israel 0 NA NA 0 0 0 NA NA NA
1784 5 Israel 2 892 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1785 5 Dahomey 2 893 F Dahomey Israel 1 245 1.062 33 21 54 NA NA NA
1786 5 Israel 2 893 M Israel Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1787 5 Israel 2 894 F Israel Israel 1 242 1.198 0 0 0 NA NA NA
1788 5 Israel 2 894 M Israel Israel 0 NA NA NA NA NA 0 0 0.0000000
1789 5 Sweden 2 895 F Sweden Israel 0 NA NA 0 0 0 NA NA NA
1790 5 Israel 2 895 M Israel Sweden 0 NA NA NA NA NA 0 0 0.0000000
1791 5 Barcelona 2 896 F Barcelona Sweden 0 NA NA 0 0 0 NA NA NA
1792 5 Sweden 2 896 M Sweden Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1793 5 Brownsville 2 897 F Brownsville Sweden 0 NA NA 0 0 0 NA NA NA
1794 5 Sweden 2 897 M Sweden Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1795 5 Dahomey 2 898 F Dahomey Sweden 0 NA NA 0 0 0 NA NA NA
1796 5 Sweden 2 898 M Sweden Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1797 5 Israel 2 899 F Israel Sweden 0 NA NA 0 0 0 NA NA NA
1798 5 Sweden 2 899 M Sweden Israel 1 250 NA NA NA NA 0 0 0.0000000
1799 5 Sweden 2 900 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
1800 5 Sweden 2 900 M Sweden Sweden 0 NA NA NA NA NA 0 0 0.0000000
1801 6 Barcelona 1 901 F Barcelona Barcelona 1 252 NA 20 16 36 NA NA NA
1802 6 Barcelona 1 901 M Barcelona Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1803 6 Brownsville 1 902 F Brownsville Barcelona 0 NA NA 0 0 0 NA NA NA
1804 6 Barcelona 1 902 M Barcelona Brownsville 1 241 1.060 NA NA NA 36 68 0.3461538
1807 6 Israel 1 904 F Israel Barcelona 0 NA NA 0 0 0 NA NA NA
1808 6 Barcelona 1 904 M Barcelona Israel 0 NA NA NA NA NA 0 0 0.0000000
1809 6 Sweden 1 905 F Sweden Barcelona 0 NA NA 0 0 0 NA NA NA
1810 6 Barcelona 1 905 M Barcelona Sweden 1 260 1.084 NA NA NA 97 4 0.9603960
1811 6 Barcelona 1 906 F Barcelona Brownsville 1 NA 1.177 31 35 66 NA NA NA
1812 6 Brownsville 1 906 M Brownsville Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1815 6 Dahomey 1 908 F Dahomey Brownsville 0 NA NA 0 0 0 NA NA NA
1816 6 Brownsville 1 908 M Brownsville Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1817 6 Israel 1 909 F Israel Brownsville 0 NA NA 0 0 0 NA NA NA
1818 6 Brownsville 1 909 M Brownsville Israel 0 NA NA NA NA NA 0 0 0.0000000
1819 6 Sweden 1 910 F Sweden Brownsville 0 NA NA 0 0 0 NA NA NA
1820 6 Brownsville 1 910 M Brownsville Sweden 1 257 0.898 NA NA NA 0 34 0.0000000
1821 6 Barcelona 1 911 F Barcelona Dahomey 0 NA NA 0 0 0 NA NA NA
1822 6 Dahomey 1 911 M Dahomey Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1823 6 Brownsville 1 912 F Brownsville Dahomey 1 242 1.018 17 18 35 NA NA NA
1824 6 Dahomey 1 912 M Dahomey Brownsville 1 260 0.932 NA NA NA 0 74 0.0000000
1825 6 Dahomey 1 913 F Dahomey Dahomey 0 NA NA 0 0 0 NA NA NA
1826 6 Dahomey 1 913 M Dahomey Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1827 6 Israel 1 914 F Israel Dahomey 0 NA NA 0 0 0 NA NA NA
1828 6 Dahomey 1 914 M Dahomey Israel 1 251 0.872 NA NA NA 0 35 0.0000000
1829 6 Sweden 1 915 F Sweden Dahomey 1 226 1.096 30 37 67 NA NA NA
1830 6 Dahomey 1 915 M Dahomey Sweden 0 NA NA NA NA NA 0 0 0.0000000
1831 6 Barcelona 1 916 F Barcelona Israel 0 NA NA 0 0 0 NA NA NA
1832 6 Israel 1 916 M Israel Barcelona 1 270 0.865 NA NA NA 0 101 0.0000000
1833 6 Brownsville 1 917 F Brownsville Israel 0 NA NA 0 0 0 NA NA NA
1834 6 Israel 1 917 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1835 6 Dahomey 1 918 F Dahomey Israel 1 259 0.959 0 0 0 NA NA NA
1836 6 Israel 1 918 M Israel Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1837 6 Israel 1 919 F Israel Israel 0 NA NA 0 0 0 NA NA NA
1838 6 Israel 1 919 M Israel Israel 0 NA NA NA NA NA 0 0 0.0000000
1839 6 Sweden 1 920 F Sweden Israel 0 NA NA 0 0 0 NA NA NA
1840 6 Israel 1 920 M Israel Sweden 0 NA NA NA NA NA 0 0 0.0000000
1843 6 Brownsville 1 922 F Brownsville Sweden 0 NA NA 0 0 0 NA NA NA
1844 6 Sweden 1 922 M Sweden Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1845 6 Dahomey 1 923 F Dahomey Sweden 0 NA NA 0 0 0 NA NA NA
1846 6 Sweden 1 923 M Sweden Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1847 6 Israel 1 924 F Israel Sweden 0 NA NA 0 0 0 NA NA NA
1848 6 Sweden 1 924 M Sweden Israel 0 NA NA NA NA NA 0 0 0.0000000
1849 6 Sweden 1 925 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
1850 6 Sweden 1 925 M Sweden Sweden 0 NA NA NA NA NA 0 0 0.0000000
1851 6 Barcelona 1 926 F Barcelona Barcelona 0 NA NA 0 0 0 NA NA NA
1852 6 Barcelona 1 926 M Barcelona Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1853 6 Brownsville 1 927 F Brownsville Barcelona 0 NA NA 0 0 0 NA NA NA
1854 6 Barcelona 1 927 M Barcelona Brownsville 1 269 NA NA NA NA 0 0 0.0000000
1855 6 Dahomey 1 928 F Dahomey Barcelona 1 240 1.100 30 28 58 NA NA NA
1856 6 Barcelona 1 928 M Barcelona Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1857 6 Israel 1 929 F Israel Barcelona 0 NA NA 0 0 0 NA NA NA
1858 6 Barcelona 1 929 M Barcelona Israel 0 NA NA NA NA NA 0 0 0.0000000
1859 6 Sweden 1 930 F Sweden Barcelona 1 252 NA 22 17 39 NA NA NA
1860 6 Barcelona 1 930 M Barcelona Sweden 1 241 NA NA NA NA 0 107 0.0000000
1861 6 Barcelona 1 931 F Barcelona Brownsville 1 246 NA 0 0 0 NA NA NA
1862 6 Brownsville 1 931 M Brownsville Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1863 6 Brownsville 1 932 F Brownsville Brownsville 0 NA NA 0 0 0 NA NA NA
1864 6 Brownsville 1 932 M Brownsville Brownsville 1 230 NA NA NA NA 0 0 0.0000000
1865 6 Dahomey 1 933 F Dahomey Brownsville 0 NA NA 0 0 0 NA NA NA
1866 6 Brownsville 1 933 M Brownsville Dahomey 1 247 NA NA NA NA 0 0 0.0000000
1867 6 Israel 1 934 F Israel Brownsville 0 NA NA 0 0 0 NA NA NA
1868 6 Brownsville 1 934 M Brownsville Israel 1 261 0.892 NA NA NA 0 56 0.0000000
1869 6 Sweden 1 935 F Sweden Brownsville 0 NA NA 0 0 0 NA NA NA
1870 6 Brownsville 1 935 M Brownsville Sweden 0 NA NA NA NA NA 0 0 0.0000000
1871 6 Barcelona 1 936 F Barcelona Dahomey 0 NA NA 0 0 0 NA NA NA
1872 6 Dahomey 1 936 M Dahomey Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1873 6 Brownsville 1 937 F Brownsville Dahomey 0 NA NA 0 0 0 NA NA NA
1874 6 Dahomey 1 937 M Dahomey Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1875 6 Dahomey 1 938 F Dahomey Dahomey 1 256 0.976 0 0 0 NA NA NA
1876 6 Dahomey 1 938 M Dahomey Dahomey 1 247 NA NA NA NA 0 28 0.0000000
1877 6 Israel 1 939 F Israel Dahomey 0 NA NA 0 0 0 NA NA NA
1878 6 Dahomey 1 939 M Dahomey Israel 0 NA NA NA NA NA 0 0 0.0000000
1879 6 Sweden 1 940 F Sweden Dahomey 0 NA NA 0 0 0 NA NA NA
1880 6 Dahomey 1 940 M Dahomey Sweden 0 NA NA NA NA NA 0 0 0.0000000
1881 6 Barcelona 1 941 F Barcelona Israel 1 247 NA 0 0 0 NA NA NA
1882 6 Israel 1 941 M Israel Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1883 6 Brownsville 1 942 F Brownsville Israel 0 NA NA 0 0 0 NA NA NA
1884 6 Israel 1 942 M Israel Brownsville 1 257 0.918 NA NA NA 0 105 0.0000000
1885 6 Dahomey 1 943 F Dahomey Israel 1 254 NA 0 0 0 NA NA NA
1886 6 Israel 1 943 M Israel Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1887 6 Israel 1 944 F Israel Israel 0 NA NA 0 0 0 NA NA NA
1888 6 Israel 1 944 M Israel Israel 0 NA NA NA NA NA 0 0 0.0000000
1889 6 Sweden 1 945 F Sweden Israel 1 247 NA 0 0 0 NA NA NA
1890 6 Israel 1 945 M Israel Sweden 1 239 NA NA NA NA 0 65 0.0000000
1891 6 Barcelona 1 946 F Barcelona Sweden 0 NA NA 0 0 0 NA NA NA
1892 6 Sweden 1 946 M Sweden Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1893 6 Brownsville 1 947 F Brownsville Sweden 1 239 NA 0 0 0 NA NA NA
1894 6 Sweden 1 947 M Sweden Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1895 6 Dahomey 1 948 F Dahomey Sweden 0 NA NA 0 0 0 NA NA NA
1896 6 Sweden 1 948 M Sweden Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1897 6 Israel 1 949 F Israel Sweden 0 NA NA 0 0 0 NA NA NA
1898 6 Sweden 1 949 M Sweden Israel 0 NA NA NA NA NA 0 0 0.0000000
1899 6 Sweden 1 950 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
1900 6 Sweden 1 950 M Sweden Sweden 0 NA NA NA NA NA 0 0 0.0000000
1901 6 Barcelona 1 951 F Barcelona Barcelona 0 NA NA 0 0 0 NA NA NA
1902 6 Barcelona 1 951 M Barcelona Barcelona 1 273 0.865 NA NA NA 0 0 0.0000000
1903 6 Brownsville 1 952 F Brownsville Barcelona 0 NA NA 0 0 0 NA NA NA
1904 6 Barcelona 1 952 M Barcelona Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1905 6 Dahomey 1 953 F Dahomey Barcelona 0 NA NA 0 0 0 NA NA NA
1906 6 Barcelona 1 953 M Barcelona Dahomey 1 254 0.929 NA NA NA 0 35 0.0000000
1907 6 Israel 1 954 F Israel Barcelona 0 NA NA 0 0 0 NA NA NA
1908 6 Barcelona 1 954 M Barcelona Israel 0 NA NA NA NA NA 0 0 0.0000000
1909 6 Sweden 1 955 F Sweden Barcelona 0 NA NA 0 0 0 NA NA NA
1910 6 Barcelona 1 955 M Barcelona Sweden 0 NA NA NA NA NA 0 0 0.0000000
1911 6 Barcelona 1 956 F Barcelona Brownsville 0 NA NA 0 0 0 NA NA NA
1912 6 Brownsville 1 956 M Brownsville Barcelona 1 247 NA NA NA NA 0 48 0.0000000
1913 6 Brownsville 1 957 F Brownsville Brownsville 0 NA NA 0 0 0 NA NA NA
1914 6 Brownsville 1 957 M Brownsville Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1915 6 Dahomey 1 958 F Dahomey Brownsville 0 NA NA 0 0 0 NA NA NA
1916 6 Brownsville 1 958 M Brownsville Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1917 6 Israel 1 959 F Israel Brownsville 0 NA NA 0 0 0 NA NA NA
1918 6 Brownsville 1 959 M Brownsville Israel 1 244 0.706 NA NA NA 0 118 0.0000000
1919 6 Sweden 1 960 F Sweden Brownsville 0 NA NA 0 0 0 NA NA NA
1920 6 Brownsville 1 960 M Brownsville Sweden 0 NA NA NA NA NA 0 0 0.0000000
1921 6 Barcelona 1 961 F Barcelona Dahomey 0 NA NA 0 0 0 NA NA NA
1922 6 Dahomey 1 961 M Dahomey Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1923 6 Brownsville 1 962 F Brownsville Dahomey 0 NA NA 0 0 0 NA NA NA
1924 6 Dahomey 1 962 M Dahomey Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1925 6 Dahomey 1 963 F Dahomey Dahomey 0 NA NA 0 0 0 NA NA NA
1926 6 Dahomey 1 963 M Dahomey Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1927 6 Israel 1 964 F Israel Dahomey 0 NA NA 0 0 0 NA NA NA
1928 6 Dahomey 1 964 M Dahomey Israel 1 249 1.078 NA NA NA 84 22 0.7924528
1929 6 Sweden 1 965 F Sweden Dahomey 0 NA NA 0 0 0 NA NA NA
1930 6 Dahomey 1 965 M Dahomey Sweden 1 243 1.008 NA NA NA 49 6 0.8909091
1931 6 Barcelona 1 966 F Barcelona Israel 0 NA NA 0 0 0 NA NA NA
1932 6 Israel 1 966 M Israel Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1933 6 Brownsville 1 967 F Brownsville Israel 1 NA 1.094 0 0 0 NA NA NA
1934 6 Israel 1 967 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1935 6 Dahomey 1 968 F Dahomey Israel 0 NA NA 0 0 0 NA NA NA
1936 6 Israel 1 968 M Israel Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1937 6 Israel 1 969 F Israel Israel 1 270 NA 0 0 0 NA NA NA
1938 6 Israel 1 969 M Israel Israel 1 268 0.844 NA NA NA 73 36 0.6697248
1939 6 Sweden 1 970 F Sweden Israel 1 253 1.068 28 18 46 NA NA NA
1940 6 Israel 1 970 M Israel Sweden 1 271 0.900 NA NA NA 39 16 0.7090909
1941 6 Barcelona 1 971 F Barcelona Sweden 1 245 1.040 21 25 46 NA NA NA
1942 6 Sweden 1 971 M Sweden Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1943 6 Brownsville 1 972 F Brownsville Sweden 1 241 NA 0 0 0 NA NA NA
1944 6 Sweden 1 972 M Sweden Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1945 6 Dahomey 1 973 F Dahomey Sweden 1 251 NA 1 1 2 NA NA NA
1946 6 Sweden 1 973 M Sweden Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1951 6 Barcelona 1 976 F Barcelona Barcelona 0 NA NA 0 0 0 NA NA NA
1952 6 Barcelona 1 976 M Barcelona Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1953 6 Brownsville 1 977 F Brownsville Barcelona 0 NA NA 0 0 0 NA NA NA
1954 6 Barcelona 1 977 M Barcelona Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1955 6 Dahomey 1 978 F Dahomey Barcelona 1 257 0.985 22 32 54 NA NA NA
1956 6 Barcelona 1 978 M Barcelona Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1957 6 Israel 1 979 F Israel Barcelona 0 NA NA 0 0 0 NA NA NA
1958 6 Barcelona 1 979 M Barcelona Israel 1 277 NA NA NA NA 0 66 0.0000000
1959 6 Sweden 1 980 F Sweden Barcelona 0 NA NA 0 0 0 NA NA NA
1960 6 Barcelona 1 980 M Barcelona Sweden 0 NA NA NA NA NA 0 0 0.0000000
1961 6 Barcelona 1 981 F Barcelona Brownsville 1 255 0.989 8 8 16 NA NA NA
1962 6 Brownsville 1 981 M Brownsville Barcelona 1 287 0.919 NA NA NA 0 66 0.0000000
1963 6 Brownsville 1 982 F Brownsville Brownsville 0 NA NA 0 0 0 NA NA NA
1964 6 Brownsville 1 982 M Brownsville Brownsville 1 247 0.999 NA NA NA 0 90 0.0000000
1965 6 Dahomey 1 983 F Dahomey Brownsville 0 NA NA 0 0 0 NA NA NA
1966 6 Brownsville 1 983 M Brownsville Dahomey 1 NA 0.910 NA NA NA 0 14 0.0000000
1967 6 Israel 1 984 F Israel Brownsville 0 NA NA 0 0 0 NA NA NA
1968 6 Brownsville 1 984 M Brownsville Israel 0 NA NA NA NA NA 0 0 0.0000000
1969 6 Sweden 1 985 F Sweden Brownsville 0 NA NA 0 0 0 NA NA NA
1970 6 Brownsville 1 985 M Brownsville Sweden 1 240 0.999 NA NA NA 0 0 0.0000000
1971 6 Barcelona 1 986 F Barcelona Dahomey 0 NA NA 0 0 0 NA NA NA
1972 6 Dahomey 1 986 M Dahomey Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1973 6 Brownsville 1 987 F Brownsville Dahomey 1 242 1.024 29 30 59 NA NA NA
1974 6 Dahomey 1 987 M Dahomey Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1975 6 Dahomey 1 988 F Dahomey Dahomey 0 NA NA 0 0 0 NA NA NA
1976 6 Dahomey 1 988 M Dahomey Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1977 6 Israel 1 989 F Israel Dahomey 1 242 NA 0 0 0 NA NA NA
1978 6 Dahomey 1 989 M Dahomey Israel 0 NA NA NA NA NA 0 0 0.0000000
1979 6 Sweden 1 990 F Sweden Dahomey 0 NA NA 0 0 0 NA NA NA
1980 6 Dahomey 1 990 M Dahomey Sweden 0 NA NA NA NA NA 0 0 0.0000000
1981 6 Barcelona 1 991 F Barcelona Israel 0 NA NA 0 0 0 NA NA NA
1982 6 Israel 1 991 M Israel Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1983 6 Brownsville 1 992 F Brownsville Israel 1 245 0.996 23 18 41 NA NA NA
1984 6 Israel 1 992 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
1985 6 Dahomey 1 993 F Dahomey Israel 1 250 NA 0 0 0 NA NA NA
1986 6 Israel 1 993 M Israel Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1987 6 Israel 1 994 F Israel Israel 1 272 0.994 2 4 6 NA NA NA
1988 6 Israel 1 994 M Israel Israel 0 NA NA NA NA NA 0 0 0.0000000
1989 6 Sweden 1 995 F Sweden Israel 0 NA NA 0 0 0 NA NA NA
1990 6 Israel 1 995 M Israel Sweden 1 243 1.012 NA NA NA 0 4 0.0000000
1991 6 Barcelona 1 996 F Barcelona Sweden 0 NA NA 0 0 0 NA NA NA
1992 6 Sweden 1 996 M Sweden Barcelona 0 NA NA NA NA NA 0 0 0.0000000
1993 6 Brownsville 1 997 F Brownsville Sweden 1 242 1.033 26 28 54 NA NA NA
1994 6 Sweden 1 997 M Sweden Brownsville 1 257 0.906 NA NA NA 48 60 0.4444444
1995 6 Dahomey 1 998 F Dahomey Sweden 1 275 0.908 0 0 0 NA NA NA
1996 6 Sweden 1 998 M Sweden Dahomey 0 NA NA NA NA NA 0 0 0.0000000
1997 6 Israel 1 999 F Israel Sweden 0 NA NA 0 0 0 NA NA NA
1998 6 Sweden 1 999 M Sweden Israel 1 248 0.987 NA NA NA 124 23 0.8435374
1999 6 Sweden 1 1000 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
2000 6 Sweden 1 1000 M Sweden Sweden 0 NA NA NA NA NA 0 0 0.0000000
2001 6 Barcelona 1 1001 F Barcelona Barcelona 0 NA NA 0 0 0 NA NA NA
2002 6 Barcelona 1 1001 M Barcelona Barcelona 0 NA NA NA NA NA 0 0 0.0000000
2003 6 Brownsville 1 1002 F Brownsville Barcelona 1 269 1.042 23 15 38 NA NA NA
2004 6 Barcelona 1 1002 M Barcelona Brownsville 1 271 0.963 NA NA NA 97 24 0.8016529
2005 6 Dahomey 1 1003 F Dahomey Barcelona 0 NA NA 0 0 0 NA NA NA
2006 6 Barcelona 1 1003 M Barcelona Dahomey 1 244 1.059 NA NA NA 58 9 0.8656716
2007 6 Israel 1 1004 F Israel Barcelona 1 250 NA 27 21 48 NA NA NA
2008 6 Barcelona 1 1004 M Barcelona Israel 0 NA NA NA NA NA 0 0 0.0000000
2009 6 Sweden 1 1005 F Sweden Barcelona 1 248 1.149 23 20 43 NA NA NA
2010 6 Barcelona 1 1005 M Barcelona Sweden 0 NA NA NA NA NA 0 0 0.0000000
2011 6 Barcelona 1 1006 F Barcelona Brownsville 1 274 NA 0 0 0 NA NA NA
2012 6 Brownsville 1 1006 M Brownsville Barcelona 1 242 1.030 NA NA NA 0 32 0.0000000
2013 6 Brownsville 1 1007 F Brownsville Brownsville 1 254 NA 0 0 0 NA NA NA
2014 6 Brownsville 1 1007 M Brownsville Brownsville 1 243 0.947 NA NA NA 0 0 0.0000000
2015 6 Dahomey 1 1008 F Dahomey Brownsville 1 253 1.157 48 26 74 NA NA NA
2016 6 Brownsville 1 1008 M Brownsville Dahomey 0 NA NA NA NA NA 0 0 0.0000000
2017 6 Israel 1 1009 F Israel Brownsville 0 NA NA 0 0 0 NA NA NA
2018 6 Brownsville 1 1009 M Brownsville Israel 0 NA NA NA NA NA 0 0 0.0000000
2019 6 Sweden 1 1010 F Sweden Brownsville 1 266 0.998 1 2 3 NA NA NA
2020 6 Brownsville 1 1010 M Brownsville Sweden 1 288 NA NA NA NA 0 0 0.0000000
2021 6 Barcelona 1 1011 F Barcelona Dahomey 1 247 1.092 16 26 42 NA NA NA
2022 6 Dahomey 1 1011 M Dahomey Barcelona 1 250 1.060 NA NA NA 45 3 0.9375000
2023 6 Brownsville 1 1012 F Brownsville Dahomey 1 272 1.005 14 21 35 NA NA NA
2024 6 Dahomey 1 1012 M Dahomey Brownsville 1 284 1.021 NA NA NA 4 0 1.0000000
2025 6 Dahomey 1 1013 F Dahomey Dahomey 1 245 1.074 38 32 70 NA NA NA
2026 6 Dahomey 1 1013 M Dahomey Dahomey 0 NA NA NA NA NA 0 0 0.0000000
2027 6 Israel 1 1014 F Israel Dahomey 1 274 0.967 0 0 0 NA NA NA
2028 6 Dahomey 1 1014 M Dahomey Israel 1 241 1.042 NA NA NA 0 54 0.0000000
2029 6 Sweden 1 1015 F Sweden Dahomey 1 240 NA 33 31 64 NA NA NA
2030 6 Dahomey 1 1015 M Dahomey Sweden 0 NA NA NA NA NA 0 0 0.0000000
2031 6 Barcelona 1 1016 F Barcelona Israel 1 248 1.106 22 30 52 NA NA NA
2032 6 Israel 1 1016 M Israel Barcelona 0 NA NA NA NA NA 0 0 0.0000000
2033 6 Brownsville 1 1017 F Brownsville Israel 1 245 1.063 7 9 16 NA NA NA
2034 6 Israel 1 1017 M Israel Brownsville 1 272 0.876 NA NA NA 0 96 0.0000000
2035 6 Dahomey 1 1018 F Dahomey Israel 1 252 0.985 18 21 39 NA NA NA
2036 6 Israel 1 1018 M Israel Dahomey 1 263 0.904 NA NA NA 0 58 0.0000000
2037 6 Israel 1 1019 F Israel Israel 1 231 1.053 28 25 53 NA NA NA
2038 6 Israel 1 1019 M Israel Israel 0 NA NA NA NA NA 0 0 0.0000000
2039 6 Sweden 1 1020 F Sweden Israel 1 238 1.205 0 0 0 NA NA NA
2040 6 Israel 1 1020 M Israel Sweden 1 247 NA NA NA NA NA NA NA
2041 6 Barcelona 1 1021 F Barcelona Sweden 1 273 1.106 31 38 69 NA NA NA
2042 6 Sweden 1 1021 M Sweden Barcelona 0 NA NA NA NA NA 0 0 0.0000000
2043 6 Brownsville 1 1022 F Brownsville Sweden 1 275 NA 0 0 0 NA NA NA
2044 6 Sweden 1 1022 M Sweden Brownsville 0 NA NA NA NA NA 0 0 0.0000000
2045 6 Dahomey 1 1023 F Dahomey Sweden 0 NA NA 0 0 0 NA NA NA
2046 6 Sweden 1 1023 M Sweden Dahomey 1 252 NA NA NA NA 0 19 0.0000000
2049 6 Sweden 1 1025 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
2050 6 Sweden 1 1025 M Sweden Sweden 1 268 NA NA NA NA 0 0 0.0000000
2051 6 Barcelona 1 1026 F Barcelona Barcelona 1 257 1.090 21 26 47 NA NA NA
2052 6 Barcelona 1 1026 M Barcelona Barcelona 1 255 0.995 NA NA NA 90 0 1.0000000
2053 6 Brownsville 1 1027 F Brownsville Barcelona 1 270 NA 0 0 0 NA NA NA
2054 6 Barcelona 1 1027 M Barcelona Brownsville 1 255 0.995 NA NA NA 0 16 0.0000000
2055 6 Dahomey 1 1028 F Dahomey Barcelona 0 NA NA 0 0 0 NA NA NA
2056 6 Barcelona 1 1028 M Barcelona Dahomey 1 255 0.973 NA NA NA 70 68 0.5072464
2057 6 Israel 1 1029 F Israel Barcelona 0 NA NA 0 0 0 NA NA NA
2058 6 Barcelona 1 1029 M Barcelona Israel 1 275 NA NA NA NA 0 0 0.0000000
2059 6 Sweden 1 1030 F Sweden Barcelona 0 NA NA 0 0 0 NA NA NA
2060 6 Barcelona 1 1030 M Barcelona Sweden 1 268 0.965 NA NA NA 81 33 0.7105263
2063 6 Brownsville 1 1032 F Brownsville Brownsville 1 245 1.165 39 34 73 NA NA NA
2064 6 Brownsville 1 1032 M Brownsville Brownsville 0 NA NA NA NA NA 0 0 0.0000000
2065 6 Dahomey 1 1033 F Dahomey Brownsville 0 NA NA 0 0 0 NA NA NA
2066 6 Brownsville 1 1033 M Brownsville Dahomey 0 NA NA NA NA NA 0 0 0.0000000
2067 6 Israel 1 1034 F Israel Brownsville 1 250 1.070 24 25 49 NA NA NA
2068 6 Brownsville 1 1034 M Brownsville Israel 1 254 NA NA NA NA 0 99 0.0000000
2069 6 Sweden 1 1035 F Sweden Brownsville 1 258 0.994 0 0 0 NA NA NA
2070 6 Brownsville 1 1035 M Brownsville Sweden 1 274 0.902 NA NA NA 0 43 0.0000000
2071 6 Barcelona 1 1036 F Barcelona Dahomey 1 241 1.103 22 23 45 NA NA NA
2072 6 Dahomey 1 1036 M Dahomey Barcelona 1 254 0.981 NA NA NA 14 29 0.3255814
2073 6 Brownsville 1 1037 F Brownsville Dahomey 1 230 0.916 20 20 40 NA NA NA
2074 6 Dahomey 1 1037 M Dahomey Brownsville 1 242 0.995 NA NA NA 0 17 0.0000000
2075 6 Dahomey 1 1038 F Dahomey Dahomey 1 252 1.102 27 28 55 NA NA NA
2076 6 Dahomey 1 1038 M Dahomey Dahomey 0 NA NA NA NA NA 0 0 0.0000000
2077 6 Israel 1 1039 F Israel Dahomey 1 259 1.076 19 18 37 NA NA NA
2078 6 Dahomey 1 1039 M Dahomey Israel 1 275 0.944 NA NA NA 121 0 1.0000000
2079 6 Sweden 1 1040 F Sweden Dahomey 1 269 1.003 24 23 47 NA NA NA
2080 6 Dahomey 1 1040 M Dahomey Sweden 0 NA NA NA NA NA 0 0 0.0000000
2081 6 Barcelona 1 1041 F Barcelona Israel 1 245 1.212 0 0 0 NA NA NA
2082 6 Israel 1 1041 M Israel Barcelona 0 NA NA NA NA NA 0 0 0.0000000
2083 6 Brownsville 1 1042 F Brownsville Israel 0 NA NA 0 0 0 NA NA NA
2084 6 Israel 1 1042 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
2087 6 Israel 1 1044 F Israel Israel 0 NA NA 0 0 0 NA NA NA
2088 6 Israel 1 1044 M Israel Israel 0 NA NA NA NA NA 0 0 0.0000000
2089 6 Sweden 1 1045 F Sweden Israel 1 276 0.940 6 13 19 NA NA NA
2090 6 Israel 1 1045 M Israel Sweden 0 NA NA NA NA NA 0 0 0.0000000
2091 6 Barcelona 1 1046 F Barcelona Sweden 0 NA NA 0 0 0 NA NA NA
2092 6 Sweden 1 1046 M Sweden Barcelona 0 NA NA NA NA NA 0 0 0.0000000
2093 6 Brownsville 1 1047 F Brownsville Sweden 1 254 0.897 8 14 22 NA NA NA
2094 6 Sweden 1 1047 M Sweden Brownsville 0 NA NA NA NA NA 0 0 0.0000000
2095 6 Dahomey 1 1048 F Dahomey Sweden 1 252 1.011 17 27 44 NA NA NA
2096 6 Sweden 1 1048 M Sweden Dahomey 1 262 0.970 NA NA NA 106 8 0.9298246
2097 6 Israel 1 1049 F Israel Sweden 0 NA NA 0 0 0 NA NA NA
2098 6 Sweden 1 1049 M Sweden Israel 1 286 NA NA NA NA 0 0 0.0000000
2099 6 Sweden 1 1050 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
2100 6 Sweden 1 1050 M Sweden Sweden 0 NA NA NA NA NA 0 0 0.0000000
2101 6 Barcelona 1 1051 F Barcelona Barcelona 0 NA NA 0 0 0 NA NA NA
2102 6 Barcelona 1 1051 M Barcelona Barcelona 0 NA NA NA NA NA 0 0 0.0000000
2103 6 Brownsville 1 1052 F Brownsville Barcelona 1 252 1.085 27 28 55 NA NA NA
2104 6 Barcelona 1 1052 M Barcelona Brownsville 1 277 0.917 NA NA NA 0 82 0.0000000
2105 6 Dahomey 1 1053 F Dahomey Barcelona 0 NA NA 0 0 0 NA NA NA
2106 6 Barcelona 1 1053 M Barcelona Dahomey 0 NA NA NA NA NA 0 0 0.0000000
2107 6 Israel 1 1054 F Israel Barcelona 0 NA NA 0 0 0 NA NA NA
2108 6 Barcelona 1 1054 M Barcelona Israel 0 NA NA NA NA NA 0 0 0.0000000
2109 6 Sweden 1 1055 F Sweden Barcelona 1 259 0.936 10 9 19 NA NA NA
2110 6 Barcelona 1 1055 M Barcelona Sweden 0 NA NA NA NA NA 0 0 0.0000000
2111 6 Barcelona 1 1056 F Barcelona Brownsville 0 NA NA 0 0 0 NA NA NA
2112 6 Brownsville 1 1056 M Brownsville Barcelona 0 NA NA NA NA NA 0 0 0.0000000
2113 6 Brownsville 1 1057 F Brownsville Brownsville 0 NA NA 0 0 0 NA NA NA
2114 6 Brownsville 1 1057 M Brownsville Brownsville 0 NA NA NA NA NA 0 0 0.0000000
2115 6 Dahomey 1 1058 F Dahomey Brownsville 0 NA NA 0 0 0 NA NA NA
2116 6 Brownsville 1 1058 M Brownsville Dahomey 0 NA NA NA NA NA 0 0 0.0000000
2117 6 Israel 1 1059 F Israel Brownsville 0 NA NA 0 0 0 NA NA NA
2118 6 Brownsville 1 1059 M Brownsville Israel 0 NA NA NA NA NA 0 0 0.0000000
2119 6 Sweden 1 1060 F Sweden Brownsville 0 NA NA 0 0 0 NA NA NA
2120 6 Brownsville 1 1060 M Brownsville Sweden 0 NA NA NA NA NA 0 0 0.0000000
2121 6 Barcelona 1 1061 F Barcelona Dahomey 0 NA NA 0 0 0 NA NA NA
2122 6 Dahomey 1 1061 M Dahomey Barcelona 0 NA NA NA NA NA 0 0 0.0000000
2123 6 Brownsville 1 1062 F Brownsville Dahomey 0 NA NA 0 0 0 NA NA NA
2124 6 Dahomey 1 1062 M Dahomey Brownsville 0 NA NA NA NA NA 0 0 0.0000000
2125 6 Dahomey 1 1063 F Dahomey Dahomey 0 NA NA 0 0 0 NA NA NA
2126 6 Dahomey 1 1063 M Dahomey Dahomey 0 NA NA NA NA NA 0 0 0.0000000
2127 6 Israel 1 1064 F Israel Dahomey 0 NA NA 0 0 0 NA NA NA
2128 6 Dahomey 1 1064 M Dahomey Israel 0 NA NA NA NA NA 0 0 0.0000000
2129 6 Sweden 1 1065 F Sweden Dahomey 0 NA NA 0 0 0 NA NA NA
2130 6 Dahomey 1 1065 M Dahomey Sweden 0 NA NA NA NA NA 0 0 0.0000000
2131 6 Barcelona 1 1066 F Barcelona Israel 0 NA NA 0 0 0 NA NA NA
2132 6 Israel 1 1066 M Israel Barcelona 0 NA NA NA NA NA 0 0 0.0000000
2133 6 Brownsville 1 1067 F Brownsville Israel 0 NA NA 0 0 0 NA NA NA
2134 6 Israel 1 1067 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
2135 6 Dahomey 1 1068 F Dahomey Israel 1 256 0.999 28 18 46 NA NA NA
2136 6 Israel 1 1068 M Israel Dahomey 1 275 0.827 NA NA NA 0 30 0.0000000
2137 6 Israel 1 1069 F Israel Israel 0 NA NA 0 0 0 NA NA NA
2138 6 Israel 1 1069 M Israel Israel 0 NA NA NA NA NA 0 0 0.0000000
2139 6 Sweden 1 1070 F Sweden Israel 0 NA NA 0 0 0 NA NA NA
2140 6 Israel 1 1070 M Israel Sweden 0 NA NA NA NA NA 0 0 0.0000000
2141 6 Barcelona 1 1071 F Barcelona Sweden 0 NA NA 0 0 0 NA NA NA
2142 6 Sweden 1 1071 M Sweden Barcelona 0 NA NA NA NA NA 0 0 0.0000000
2143 6 Brownsville 1 1072 F Brownsville Sweden 0 NA NA 0 0 0 NA NA NA
2144 6 Sweden 1 1072 M Sweden Brownsville 0 NA NA NA NA NA 0 0 0.0000000
2145 6 Dahomey 1 1073 F Dahomey Sweden 0 NA NA 0 0 0 NA NA NA
2146 6 Sweden 1 1073 M Sweden Dahomey 1 274 NA NA NA NA 0 49 0.0000000
2147 6 Israel 1 1074 F Israel Sweden 0 NA NA 0 0 0 NA NA NA
2148 6 Sweden 1 1074 M Sweden Israel 0 NA NA NA NA NA 0 0 0.0000000
2149 6 Sweden 1 1075 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
2150 6 Sweden 1 1075 M Sweden Sweden 0 NA NA NA NA NA 0 0 0.0000000
2151 6 Barcelona 1 1076 F Barcelona Barcelona 0 NA NA 0 0 0 NA NA NA
2152 6 Barcelona 1 1076 M Barcelona Barcelona 1 244 NA NA NA NA 0 0 0.0000000
2153 6 Brownsville 1 1077 F Brownsville Barcelona 0 NA NA 0 0 0 NA NA NA
2154 6 Barcelona 1 1077 M Barcelona Brownsville 0 NA NA NA NA NA 0 0 0.0000000
2155 6 Dahomey 1 1078 F Dahomey Barcelona 1 256 1.080 13 4 17 NA NA NA
2156 6 Barcelona 1 1078 M Barcelona Dahomey 1 245 1.017 NA NA NA 46 38 0.5476190
2157 6 Israel 1 1079 F Israel Barcelona 0 NA NA 0 0 0 NA NA NA
2158 6 Barcelona 1 1079 M Barcelona Israel 1 243 1.059 NA NA NA 50 2 0.9615385
2159 6 Sweden 1 1080 F Sweden Barcelona 0 NA NA 0 0 0 NA NA NA
2160 6 Barcelona 1 1080 M Barcelona Sweden 1 261 0.952 NA NA NA 107 53 0.6687500
2161 6 Barcelona 1 1081 F Barcelona Brownsville 0 NA NA 0 0 0 NA NA NA
2162 6 Brownsville 1 1081 M Brownsville Barcelona 0 NA NA NA NA NA 0 0 0.0000000
2163 6 Brownsville 1 1082 F Brownsville Brownsville 0 NA NA 0 0 0 NA NA NA
2164 6 Brownsville 1 1082 M Brownsville Brownsville 0 NA NA NA NA NA 0 0 0.0000000
2165 6 Dahomey 1 1083 F Dahomey Brownsville 0 NA NA 0 0 0 NA NA NA
2166 6 Brownsville 1 1083 M Brownsville Dahomey 0 NA NA NA NA NA 0 0 0.0000000
2167 6 Israel 1 1084 F Israel Brownsville 0 NA NA 0 0 0 NA NA NA
2168 6 Brownsville 1 1084 M Brownsville Israel 1 269 NA NA NA NA 0 79 0.0000000
2169 6 Sweden 1 1085 F Sweden Brownsville 0 NA NA 0 0 0 NA NA NA
2170 6 Brownsville 1 1085 M Brownsville Sweden 1 260 0.993 NA NA NA 0 45 0.0000000
2171 6 Barcelona 1 1086 F Barcelona Dahomey 1 258 1.057 25 28 53 NA NA NA
2172 6 Dahomey 1 1086 M Dahomey Barcelona 0 NA NA NA NA NA 0 0 0.0000000
2173 6 Brownsville 1 1087 F Brownsville Dahomey 0 NA NA 0 0 0 NA NA NA
2174 6 Dahomey 1 1087 M Dahomey Brownsville 0 NA NA NA NA NA 0 0 0.0000000
2175 6 Dahomey 1 1088 F Dahomey Dahomey 0 NA NA 0 0 0 NA NA NA
2176 6 Dahomey 1 1088 M Dahomey Dahomey 1 NA NA NA NA NA 0 0 0.0000000
2177 6 Israel 1 1089 F Israel Dahomey 0 NA NA 0 0 0 NA NA NA
2178 6 Dahomey 1 1089 M Dahomey Israel 1 262 0.988 NA NA NA 0 48 0.0000000
2179 6 Sweden 1 1090 F Sweden Dahomey 0 NA NA 0 0 0 NA NA NA
2180 6 Dahomey 1 1090 M Dahomey Sweden 0 NA NA NA NA NA 0 0 0.0000000
2181 6 Barcelona 1 1091 F Barcelona Israel 0 NA NA 0 0 0 NA NA NA
2182 6 Israel 1 1091 M Israel Barcelona 1 257 NA NA NA NA NA NA NA
2183 6 Brownsville 1 1092 F Brownsville Israel 0 NA NA 0 0 0 NA NA NA
2184 6 Israel 1 1092 M Israel Brownsville 0 NA NA NA NA NA 0 0 0.0000000
2185 6 Dahomey 1 1093 F Dahomey Israel 1 275 NA 13 18 31 NA NA NA
2186 6 Israel 1 1093 M Israel Dahomey 0 NA NA NA NA NA 0 0 0.0000000
2187 6 Israel 1 1094 F Israel Israel 1 245 1.100 19 24 43 NA NA NA
2188 6 Israel 1 1094 M Israel Israel 0 NA NA NA NA NA 0 0 0.0000000
2189 6 Sweden 1 1095 F Sweden Israel 1 251 1.124 21 45 66 NA NA NA
2190 6 Israel 1 1095 M Israel Sweden 0 NA NA NA NA NA 0 0 0.0000000
2191 6 Barcelona 1 1096 F Barcelona Sweden 0 NA NA 0 0 0 NA NA NA
2192 6 Sweden 1 1096 M Sweden Barcelona 0 NA NA NA NA NA 0 0 0.0000000
2193 6 Brownsville 1 1097 F Brownsville Sweden 1 275 NA 0 0 0 NA NA NA
2194 6 Sweden 1 1097 M Sweden Brownsville 0 NA NA NA NA NA 0 0 0.0000000
2195 6 Dahomey 1 1098 F Dahomey Sweden 0 NA NA 0 0 0 NA NA NA
2196 6 Sweden 1 1098 M Sweden Dahomey 1 253 1.071 NA NA NA 58 81 0.4172662
2197 6 Israel 1 1099 F Israel Sweden 1 NA 1.114 9 14 23 NA NA NA
2198 6 Sweden 1 1099 M Sweden Israel 1 278 NA NA NA NA 0 0 0.0000000
2199 6 Sweden 1 1100 F Sweden Sweden 0 NA NA 0 0 0 NA NA NA
2200 6 Sweden 1 1100 M Sweden Sweden 1 274 NA NA NA NA 0 0 0.0000000

\(~\)

Columns represent:

Individual: the focal fly being tested.

Block: the experiment was completed in six separate blocks, identified here 1-6.

Strain: which of the 10 combinations of haplotype and duplicate strain was the individual from?

Dyad_ID: this identifies the pipette tip environment that the individual developed in.

Sex: the sex of the focal individual.

Focal_haplotype: the mtDNA haplotype carried by the focal individual.

Social_haplotype: the mtDNA haplotype carried by the focal individual’s competitor.

Survived: did the focal individual survive to adulthood (1) or die during larval development (0)?

Dev_time: the hours taken for the focal individual to progress from an egg to an adult. NA values indicate where individuals did not survive or development time could not be measured.

Wing_length: the length in mm of the focal individual’s right wing.

Maternal_female_offspring: the number of adult female offspring the focal mt-strain female produced over a two day period.

Maternal_male_offspring: the number of adult male offspring the focal mt-strain female produced over a two day period.

Maternal_total_offspring: the total number of adult offspring the focal mt-strain female produced over a two day period.

Paternal_focal_offspring: the number of red-eye phenotype offspring sired by a mt-strain male in the adult male fitness assay.

Paternal_bw_offspring: the number of brown-eye phenotype offspring sired by a bw competitor male in the adult male fitness assay.

Proportion focal: the proportion of offspring produced by the mt-strain male in the adult male fitness assay.

R session information

This section provides information on the operating system and R packages attached during the production of this document, to allow easier replication of the analysis.

sessionInfo() %>% pander

R version 3.6.2 (2019-12-12)

Platform: x86_64-apple-darwin15.6.0 (64-bit)

locale: en_AU.UTF-8||en_AU.UTF-8||en_AU.UTF-8||C||en_AU.UTF-8||en_AU.UTF-8

attached base packages: grid, stats, graphics, grDevices, utils, datasets, methods and base

other attached packages: groupdata2(v.1.1.2), pander(v.0.6.3), kableExtra(v.1.1.0), ggbeeswarm(v.0.6.0), ggpubr(v.0.2.5), magrittr(v.1.5), emmeans(v.1.4.4), MuMIn(v.1.43.15), glmmTMB(v.1.0.1), lmerTest(v.3.1-1), lme4(v.1.1-21), Matrix(v.1.2-18), png(v.0.1-7), forcats(v.0.5.0), stringr(v.1.4.0), dplyr(v.0.8.5), purrr(v.0.3.3), readr(v.1.3.1), tidyr(v.1.0.2), tibble(v.2.1.3), ggplot2(v.3.3.0) and tidyverse(v.1.3.0)

loaded via a namespace (and not attached): nlme(v.3.1-144), fs(v.1.3.1), pbkrtest(v.0.4-7), lubridate(v.1.7.4), webshot(v.0.5.2), httr(v.1.4.1), numDeriv(v.2016.8-1.1), tools(v.3.6.2), TMB(v.1.7.16), backports(v.1.1.5), R6(v.2.4.1), vipor(v.0.4.5), DBI(v.1.1.0), colorspace(v.1.4-1), withr(v.2.1.2), tidyselect(v.1.0.0), compiler(v.3.6.2), cli(v.2.0.1), rvest(v.0.3.5), xml2(v.1.2.2), labeling(v.0.3), scales(v.1.1.0), mvtnorm(v.1.0-12), digest(v.0.6.23), minqa(v.1.2.4), rmarkdown(v.2.1), base64enc(v.0.1-3), pkgconfig(v.2.0.3), htmltools(v.0.4.0), highr(v.0.8), dbplyr(v.1.4.2), rlang(v.0.4.4), readxl(v.1.3.1), rstudioapi(v.0.11), farver(v.2.0.3), generics(v.0.0.2), jsonlite(v.1.6.1), Rcpp(v.1.0.3), munsell(v.0.5.0), fansi(v.0.4.1), lifecycle(v.0.1.0), stringi(v.1.4.5), yaml(v.2.2.1), MASS(v.7.3-51.5), plyr(v.1.8.5), parallel(v.3.6.2), crayon(v.1.3.4), lattice(v.0.20-38), cowplot(v.1.0.0), haven(v.2.2.0), splines(v.3.6.2), hms(v.0.5.3), knitr(v.1.28), pillar(v.1.4.3), boot(v.1.3-24), estimability(v.1.3), ggsignif(v.0.6.0), stats4(v.3.6.2), reprex(v.0.3.0), glue(v.1.3.1), evaluate(v.0.14), modelr(v.0.1.5), vctrs(v.0.2.2), nloptr(v.1.2.1), cellranger(v.1.1.0), gtable(v.0.3.0), assertthat(v.0.2.1), xfun(v.0.12), xtable(v.1.8-4), broom(v.0.5.4), coda(v.0.19-3), viridisLite(v.0.3.0) and beeswarm(v.0.2.3)

References

Brooks, Mollie E, Kasper Kristensen, Koen J van Benthem, Arni Magnusson, Casper W Berg, Anders Nielsen, Hans J Skaug, Martin Maechler, and Benjamin M Bolker. 2017. “Modeling Zero-Inflated Count Data with glmmTMB.” Journal Article. BioRxiv, 132753.

Symonds, Matthew R. E., and Adnan Moussalli. 2011. “A Brief Guide to Model Selection, Multimodel Inference and Model Averaging in Behavioural Ecology Using Akaike’s Information Criterion.” Journal Article. Behavioral Ecology and Sociobiology 65 (1): 13–21. https://doi.org/10.1007/s00265-010-1037-6.

LS0tCnRpdGxlOiAiU2libGluZyByaXZhbHJ5IHZzIG1vdGhlcuKAmXMgY3Vyc2U6IGNhbiBraW4gY29tcGV0aXRpb24gZmFjaWxpdGF0ZSBhIHJlc3BvbnNlIHRvIHNlbGVjdGlvbiBvbiBtYWxlIG1pdG9jaG9uZHJpYT8iICAKYXV0aG9yOiAiVGhvbWFzIEEgS2VhbmV5LCBIZWlkaSBXUyBXb25nLCBEYW1pYW4gSyBEb3dsaW5nLCBUaGVyw6lzYSBNIEpvbmVzIGFuZCBMdWtlIEhvbG1hbiIKYmlibGlvZ3JhcGh5OiAic3VwcF9yZWZlcmVuY2VzLmJpYiIKc3VidGl0bGU6IFN1cHBsZW1lbnRhcnkgbWF0ZXJpYWwKb3V0cHV0OgogIGh0bWxfZG9jdW1lbnQ6CiAgICBjb2RlX2ZvbGRpbmc6IGhpZGUKICAgIGRlcHRoOiAxCiAgICBudW1iZXJfc2VjdGlvbnM6IG5vCiAgICB0aGVtZTogeWV0aQogICAgdG9jOiB5ZXMKICAgIHRvY19mbG9hdDogeWVzCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlCmVkaXRvcl9vcHRpb25zOgogIGNodW5rX291dHB1dF90eXBlOiBjb25zb2xlCi0tLQoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSwgY2FjaGUgPSBGQUxTRSwgd2FybmluZyA9IEZBTFNFLCBtZXNzYWdlID0gRkFMU0UpCmBgYAoKUHVibGlzaGVkIGluIF9Qcm9jZWVkaW5ncyBvZiB0aGUgUm95YWwgU29jaWV0eSBCXwoKQXJ0aWNsZSBET0k6IGh0dHA6Ly9keC5kb2kub3JnLzEwLjEwOTgvcnNwYi4yMDIwLjA1NzUKCiMgTG9hZCBhbGwgcmVxdWlyZWQgcGFja2FnZXMKCmBgYHtyLCBsb2FkIHBhY2thZ2VzfQoKbGlicmFyeSh0aWR5dmVyc2UpICMgZGF0YSByZS1zaGFwaW5nLCBnZ3Bsb3QsIHN0cmluZ3IgYW5kIG1vcmUKbGlicmFyeShwbmcpICMgdG8gbG9hZCBpbWFnZXMKbGlicmFyeShncmlkKSAjIHRvIHBsb3QgaW1hZ2VzCmxpYnJhcnkobG1lNCkgIyBmb3IgdGhlIGxtZXIgYW5kIGdsbWVyIG1peGVkIG1vZGVsIGZ1bmN0aW9ucwpsaWJyYXJ5KGxtZXJUZXN0KSAjIFVzZWQgdG8gZ2V0IHAtdmFsdWVzIGZvciBsbWVyIG1vZGVscyB1c2luZyBzaW11bGF0aW9uLiBJdCBvdmVyLXdyaXRlcyBsbWVyKCkgd2l0aCBhIG5ldyB2ZXJzaW9uCmxpYnJhcnkoZ2xtbVRNQikgIyBmb3IgemVyby1pbmZsYXRlZCBvciBodXJkbGUgZ2xtcwpsaWJyYXJ5KE11TUluKSAjIGZvciBtb2RlbCBzZWxlY3Rpb24gYW5kIGF2ZXJhZ2luZwpsaWJyYXJ5KGVtbWVhbnMpICMgZm9yIHBhaXJ3aXNlIGNvbXBhcmlzb25zCmxpYnJhcnkoZ2dwdWJyKSAjIGZvciB0aGUgZ2dhcnJhbmdlIGZ1bmN0aW9uCmxpYnJhcnkoZ2diZWVzd2FybSkgIyB2aW9saW4gcGxvdHMgd2l0aCBkYXRhIHBvaW50cwpsaWJyYXJ5KGthYmxlRXh0cmEpICMgbmljZSB0YWJsZXMgdGhhdCBjYW4gc2Nyb2xsCmxpYnJhcnkocGFuZGVyKSAjIG1vcmUgbmljZSB0YWJsZXMKbGlicmFyeShncm91cGRhdGEyKSAjIGZvciBhc3NpZ25pbmcgcm93cyBpbiBkYXRhLWZyYW1lcyB0byBncm91cHMKCmBgYAoKCiMgU3VwcGxlbWVudGFyeSBtZXRob2RzCgpTY2hlbWF0aWMgZm9yIHJlcGxhY2VtZW50IG9mIHRoZSB1bmtub3duIF9TeGwtR0ZQXyBudWNsZWFyIGJhY2tncm91bmQgd2l0aCB0aGUgaXNvZ2VuaWMgX3deMTExOF5fIGJhY2tncm91bmQKCmBgYHtyIGZpZy53aWR0aD02LCBmaWcuaGVpZ2h0PTh9CgppbWcgPC0gcmVhZFBORygiQ3Jvc3Npbmdfc2NoZW1lLnBuZyIpCiBncmlkLnJhc3RlcihpbWcpCmBgYAoKKipGaWd1cmUgUzEqKjogQ3Jvc3Npbmcgc2NoZW1lIHVzZWQgdG8gY3JlYXRlIGEgc3RhbmRhcmQgaG9tb3p5Z291cyBfd14xMTE4LUdGUF5fIGxpbmUuIE1hbGVzIGZyb20gdGhpcyBsaW5lIHdlcmUgY3Jvc3NlZCB3aXRoIGZlbWFsZXMgY2FycnlpbmcgYSBzcGVjaWZpYyBtaXRvY2hvbmRyaWFsIGhhcGxvdHlwZSwgdG8gY3JlYXRlIGV4cGVyaW1lbnRhbCBfbXRfLXN0cmFpbnMuIFRoZXNlIG5ld2x5IHByb2R1Y2VkIHN0cmFpbnMgY2FycmllZCB0aGUgbWl0b2Nob25kcmlhbCBoYXBsb3R5cGUgb2YgdGhlIGZlbWFsZSBhbmQgd2VyZSBoZXRlcm96eWdvdXMgZm9yIHRoZSBfU3hsLUdGUF8gY29uc3RydWN0LiBHMSA9IHRoZSBmaXJzdCBnZW5lcmF0aW9uIG9mIHRoZSBjcm9zcy4KCgoKKipUYWJsZSBTMSoqOiBSZWNpcGUgZm9yIGZvb2QgbWVkaXVtIHVzZWQgaW4gb3VyIGV4cGVyaW1lbnQuIFRoZSBwcm92aWRlZCBxdWFudGl0aWVzIG1ha2UgfiAxIGxpdHJlIG9mIGZvb2QuCgpgYGB7ciwgZm9vZCByZWNpcGV9Cgp0aWJibGUoIkluZ3JlZGllbnRzIiA9IGMoIlNveSBmbG91ciIsICJDb3JubWVhbCIsICJZZWFzdCIsICJEZXh0cm9zZSIsICJBZ2FyIiwgIldhdGVyIiwgIlRlZ29zZXB0IiwgIkFjaWQgbWl4ICg0IG1sIG9ydGhvcGhvc3Bob3JpYyBhY2lkLCA0MSBtbCBwcm9waW9uaWMgYWNpZCwgNTUgbWwgd2F0ZXIgdG8gbWFrZSAxMDAgbWxzKSIpLAogICAgICAgIlF1YW50aXR5IiA9IGMoIjIwIGciLCAiNzMgZyIsICIzNSBnIiwgIjc1IGciLCAiNiBnIiwgIjEwMDAgbWxzIiwgIjE3IG1scyIsICIxNCBtbHMiKSkgJT4lIAogIHBhbmRlcihzcGxpdC5jZWxsID0gMjAsIHNwbGl0LnRhYmxlID0gSW5mKQoKYGBgCgoKCiMgRGF0YSBhbmFseXNpcyBhbmQgc3VwcGxlbWVudGFyeSByZXN1bHRzCgoKSGVyZSB3ZSBpbmNsdWRlIGFsbCBjb2RlIHVzZWQgdG8gcnVuIG91ciBhbmFseXNpcyBhbmQgY3JlYXRlIEZpZ3VyZSAxIGFuZCAyLCBvdXIgcmF0aW9uYWxlIGJlaGluZCB0aGUgbW9kZWxsaW5nIGFwcHJvYWNoZXMsIGFuZCB0YWJsZXMgUzItOS4KCiMjIyMgUmVhZCBpbiB0aGUgZGF0YSBhbmQgY3JlYXRlIHNvbWUgaGVscGZ1bCBmdW5jdGlvbnMKCgpgYGB7ciBkYXRhIGFuZCBmdW5jdGlvbnN9CgojIFJlYWQgaW4gZGF0YSBmcmFtZSBhbmQgYWRkIER5YWRfSUQgY29sdW1uCgphbGxfZGF0YSA8LSByZWFkLmNzdigibXRETkFfbGFydmFsX2NvbXBldGl0aW9uX2RhdGEuY3N2IikgJT4lIAogIGFycmFuZ2UoSW5kaXZpZHVhbCkgJT4lCiAgZ3JvdXAobiA9IDIsIG1ldGhvZCA9ICJncmVlZHkiKSAlPiUgcmVuYW1lKER5YWRfSUQgPSAuZ3JvdXBzKQoKIyBoZWxwZXIgZnVuY3Rpb24gZm9yIHNhdmluZyBsYXJnZSBtb2RlbCBvYmplY3RzIGFuZCBuYW1pbmcgdGhlIGZpbGUgb2JqZWN0LnJkcwoKc2F2ZV9pdCA8LSBmdW5jdGlvbihvYmplY3QpewogIHNhdmVSRFMoZ2V0KG9iamVjdCksIGZpbGUgPSBwYXN0ZShvYmplY3QsICIucmRzIiwgc2VwID0gIiIpKX0KCiMgQ3JlYXRlIGEgZnVuY3Rpb24gZm9yIHN0YW5kYXJkIGVycm9yCgpTRSA8LSBmdW5jdGlvbih4KSBzZCh4KS9zcXJ0KGxlbmd0aCh4KSkKCmBgYAoKCiMjIyMgRGF0YSBwcmVwYXJhdGlvbiBmb3IgYWxsIHJlc3BvbnNlcwoKYGBge3IgZGF0YSBjbGVhbmluZ30KCiMgQ2xlYW4gdGhlIGRhdGFzZXQgdXAgZm9yIGFuYWx5c2lzCgojIFNlbGVjdCB0aGUgY29sdW1ucyB3ZSdyZSBpbnRlcmVzdGVkIGluIGFuZCByZW5hbWUgdGhlbQoKZml0bmVzc19kYXRhIDwtIGRwbHlyOjpzZWxlY3QoYWxsX2RhdGEsIEluZGl2aWR1YWwsIEJsb2NrLCBTdHJhaW4sICBEeWFkX0lELCBTZXgsIEZvY2FsLmhhcGxvdHlwZSwgU29jaWFsLmhhcGxvdHlwZSwgTW9ydGFsaXR5LCBEZXZlbG9wbWVudC50aW1lLi5ocnMuLCBXaW5nLnNpemUuLm1tLiwgRmVtYWxlLm9mZnNwcmluZywgTWFsZS5vZmZzcHJpbmcsIFRvdGFsLmZlbWFsZS5hc3NheSwgVG90YWwucmVkLmFsbC52aWFscywgVG90YWwuYncuYWxsLnZpYWxzLCBQcm9wb3J0aW9uLnJlZC5hbGwudmlhbHMpICU+JSAKICAKcmVuYW1lKEJsb2NrID0gQmxvY2ssIFN1cnZpdmVkID0gTW9ydGFsaXR5LCBGb2NhbF9oYXBsb3R5cGUgPSBGb2NhbC5oYXBsb3R5cGUsIFNvY2lhbF9oYXBsb3R5cGUgPSBTb2NpYWwuaGFwbG90eXBlLCBEZXZfdGltZSA9IERldmVsb3BtZW50LnRpbWUuLmhycy4sIFdpbmdfbGVuZ3RoID0gV2luZy5zaXplLi5tbS4sIE1hdGVybmFsX2ZlbWFsZV9vZmZzcHJpbmcgPSBGZW1hbGUub2Zmc3ByaW5nLCBNYXRlcm5hbF9tYWxlX29mZnNwcmluZyA9IE1hbGUub2Zmc3ByaW5nLCBNYXRlcm5hbF90b3RhbF9vZmZzcHJpbmcgPSBUb3RhbC5mZW1hbGUuYXNzYXksIFBhdGVybmFsX2ZvY2FsX29mZnNwcmluZyA9IFRvdGFsLnJlZC5hbGwudmlhbHMsIFBhdGVybmFsX2J3X29mZnNwcmluZyA9IFRvdGFsLmJ3LmFsbC52aWFscywgUHJvcG9ydGlvbl9mb2NhbCA9IFByb3BvcnRpb24ucmVkLmFsbC52aWFscykKCiMgRGVmaW5lIG5ldyBsZXZlbHMgZm9yIG1vcnRhbGl0eSB0byBtYWtlIHJlbmFtaW5nIHBvc3NpYmxlIAoKbGV2ZWxzKGZpdG5lc3NfZGF0YSRTdXJ2aXZlZCkgPC0gYyhsZXZlbHMoZml0bmVzc19kYXRhJFN1cnZpdmVkKSwgIk5PIikKbGV2ZWxzKGZpdG5lc3NfZGF0YSRTdXJ2aXZlZCkgPC0gYyhsZXZlbHMoZml0bmVzc19kYXRhJFN1cnZpdmVkKSwgIllFUyIpCgojIFJlbmFtZSB0aGUgbW9ydGFsaXR5IHJlc3BvbnNlcwojIEwgbWVhbnMgZGllZCBhcyBsYXJ2YSwgUCBtZWFucyBkaWVkIGFzIHB1cGFlLCBOIG1lYW5zIGRpZCBub3QgZGllIChpLmUuIGVjbG9zZWQgYXMgYW4gYWR1bHQpCgpmaXRuZXNzX2RhdGEkU3Vydml2ZWRbZml0bmVzc19kYXRhJFN1cnZpdmVkID09ICdMJ10gPC0gJ05PJwpmaXRuZXNzX2RhdGEkU3Vydml2ZWRbZml0bmVzc19kYXRhJFN1cnZpdmVkID09ICdQJ10gPC0gJ05PJwpmaXRuZXNzX2RhdGEkU3Vydml2ZWRbZml0bmVzc19kYXRhJFN1cnZpdmVkID09ICdOJ10gPC0gJ1lFUycKCiMgTm93IHRoYXQgaXQgbWFrZXMgc2Vuc2UgY2hhbmdlICJZRVMiIHRvIDEgYW5kICJOTyIgdG8gMCBzbyB3ZSBjYW4gZml0IGEgYmlub21pYWwgR0xNLgoKbGV2ZWxzKGZpdG5lc3NfZGF0YSRTdXJ2aXZlZCkgPC0gYyhsZXZlbHMoZml0bmVzc19kYXRhJFN1cnZpdmVkKSwgIjEiKQpsZXZlbHMoZml0bmVzc19kYXRhJFN1cnZpdmVkKSA8LSBjKGxldmVscyhmaXRuZXNzX2RhdGEkU3Vydml2ZWQpLCAiMCIpCgpmaXRuZXNzX2RhdGEkU3Vydml2ZWRbZml0bmVzc19kYXRhJFN1cnZpdmVkID09ICJZRVMiXSA8LSAxCmZpdG5lc3NfZGF0YSRTdXJ2aXZlZFtmaXRuZXNzX2RhdGEkU3Vydml2ZWQgPT0gIk5PIl0gPC0gMAoKIyBNYWtlIHRoZSBmYWN0b3IgbnVtZXJpYyAKCmZpdG5lc3NfZGF0YSRTdXJ2aXZlZCA8LSBhcy5udW1lcmljKGFzLmNoYXJhY3RlcihmaXRuZXNzX2RhdGEkU3Vydml2ZWQpKQoKCiMgQ3JlYXRlIHNwZWNpZmljIGRhdGFzZXRzIGZvciBlYWNoIGZpdG5lc3MgdHJhaXQKCiMgUmVtb3ZlIGFsbCByb3dzIHRoYXQgY29udGFpbiBhbiBOQSB2YWx1ZSBpbiB0aGUgc3Vydml2YWwgY29sdW1uLiBUaGUgTkFzIG1lYW4gdGhpbmdzIGxpa2UgdGhlIEdGUCBzb3J0aW5nIGRpZCBub3Qgd29yaywgb3IgdGhlIHZpYWwgd2FzIG5ldmVyIHNldCB1cCBkdWUgdG8gYSBzaG9ydGFnZSBvZiBsYXJ2YWUuIFRoZXkgYXJlIG5vdCBtZWFuaW5nZnVsIGRhdGEsIGFuZCB3ZSByZW1vdmUgdGhlbSBoZXJlLgoKc3Vydml2YWwgPC0gZml0bmVzc19kYXRhICU+JSBmaWx0ZXIoIWlzLm5hKFN1cnZpdmVkKSkgCiAgCiMgUmVtb3ZlIGFsbCByb3dzIHRoYXQgY29udGFpbiBhbiBOQSB2YWx1ZSBpbiB0aGUgZGV2ZWxvcG1lbnQgdGltZSBjb2x1bW4uIFRoaXMgaW5zdGFuY2VzIHJlcHJlc2VudCBmbGllcyB3aGVyZSB3ZSBmYWlsZWQgdG8gbWVhc3VyZSBkZXZlbG9wbWVudCB0aW1lLiAKCmxhcnZhbF9kZXZlbG9wbWVudCA8LSBmaXRuZXNzX2RhdGEgJT4lIGZpbHRlcighaXMubmEoRGV2X3RpbWUpKSAKCiMgUmVtb3ZlIGFsbCByb3dzIHRoYXQgY29udGFpbiBhbiBOQSB2YWx1ZSBpbiB0aGUgd2luZyBsZW5ndGggY29sdW1uLiBXaW5nIGxlbmd0aCB3YXMgbm90IG1lYXN1cmVkIGluIEJsb2NrcyAxIGFuZCAyLgoKYm9keV9zaXplIDwtIGZpdG5lc3NfZGF0YSAlPiUgZmlsdGVyKCFpcy5uYShXaW5nX2xlbmd0aCkpIAoKIyBSZW1vdmUgYWxsIHJvd3MgdGhhdCBjb250YWluIGFuIE5BIHZhbHVlIGluIHRoZSBmZW1hbGUgcmVwcm9kdWN0aXZlIG91dHB1dCBjb2x1bW4gKGUuZy4gYWxsIHRoZSBtYWxlcyksIGFuZCB3aGVyZSBmZW1hbGVzIGRpZCBub3Qgc3Vydml2ZSB0byBhZHVsdGhvb2QgKGNvZGVkIGFzIHByb2R1Y2luZyAwIG9mZnNwcmluZykuIAoKZmVtYWxlX3JlcHJvZHVjdGl2ZV9vdXRwdXQgPC0gZml0bmVzc19kYXRhICU+JSBmaWx0ZXIoIWlzLm5hKE1hdGVybmFsX3RvdGFsX29mZnNwcmluZyksIFN1cnZpdmVkID09IDEpCgoKIyBNYWxlIGFkdWx0IGZpdG5lc3MKCiMgRmlyc3QgcmVtb3ZlIGZlbWFsZXMgZnJvbSB0aGUgZGF0YXNldC4KCk1hbGVfZml0bmVzcyA8LSBmaXRuZXNzX2RhdGEgJT4lIGZpbHRlcighaXMubmEoUGF0ZXJuYWxfZm9jYWxfb2Zmc3ByaW5nKSkgCgojIENyZWF0ZSBhbiBvZmZzcHJpbmcgY291bnRlZCBjb2x1bW4gc28gdGhhdCB0aGUgZGF0YSBpcyBjb3JyZWN0bHkgZm9ybWF0dGVkIGZvciBhIGJpbm9taWFsIHN1Y2Nlc3MtZmFpbHVyZSBtb2RlbC4KCk1hbGVfZml0bmVzcyRPZmZzcHJpbmdfY291bnRlZCA8LSBNYWxlX2ZpdG5lc3MkUGF0ZXJuYWxfZm9jYWxfb2Zmc3ByaW5nICsgTWFsZV9maXRuZXNzJFBhdGVybmFsX2J3X29mZnNwcmluZwoKIyBOb3cgbGV0cyByZW1vdmUgdmlhbHMgd2hlcmUgdGhlIGZlbWFsZSBwcm9kdWNlZCAwIG9mZnNwcmluZyAodGhpcyBpbmNsdWRlcyB0cmlhbHMgd2hlcmUgdGhlIG1hbGUgZGllZCBpbiBkZXZlbG9wbWVudCksIGFzIHdlIGNhbm5vdCBkZXRlcm1pbmUgcGF0ZXJuaXR5IGZyb20gdGhlc2UgdmlhbHMuIFRoZSB0aWR5IHVwIHRoZSBkYXRhZnJhbWUgYnkgcmVtb3ZpbmcgdW5uZWNjZXNzYXJ5IGNvbHVtbnMKCk1hbGVfZml0bmVzcyA8LSBNYWxlX2ZpdG5lc3MgJT4lIGZpbHRlcighKE9mZnNwcmluZ19jb3VudGVkID09IDApKSAlPiUgCiAgc2VsZWN0KC1NYXRlcm5hbF9mZW1hbGVfb2Zmc3ByaW5nLCAtTWF0ZXJuYWxfbWFsZV9vZmZzcHJpbmcsIC1NYXRlcm5hbF90b3RhbF9vZmZzcHJpbmcpICU+JSAKICByZW5hbWUoRm9jYWxfbWFsZV9vZmZzcHJpbmcgPSBQYXRlcm5hbF9mb2NhbF9vZmZzcHJpbmcsIGJ3X21hbGVfb2Zmc3ByaW5nID0gUGF0ZXJuYWxfYndfb2Zmc3ByaW5nKQoKYGBgCgoKIyMgTW9kZWxsaW5nIGFwcHJvYWNoCgpXZSBhbmFseXNlZCB0aGUgZGF0YSB1c2luZyBsaW5lYXIgYW5kIGdlbmVyYWxpc2VkIGxpbmVhciBtaXhlZCBtb2RlbHMgaW4gdGhlIGBsbWVyYCBhbmRgZ2xtbVRNQmAgcGFja2FnZXMgZm9yIFIuCgoqKkZpeGVkIGVmZmVjdHMqKgoKRm9yIHRoZSBhbmFseXNpcyBvZiBmaXRuZXNzIHRyYWl0cyBleHByZXNzZWQgaW4gYm90aCBzZXhlcyAoc3Vydml2YWwsIGRldmVsb3BtZW50IHRpbWUgYW5kIGJvZHkgc2l6ZSksIHdlIGFyZSBpbnRlcmVzdGVkIGluIHRoZSBlZmZlY3Qgb2YgYW4gaW5kaXZpZHVhbOKAmXMgZm9jYWwgbXRETkEsIHRoZSBtdEROQSBvZiBhIHNvY2lhbCBjb21wZXRpdG9yIGFuZCB0aGUgZWZmZWN0IG9mIHNleCBvbiBmaXRuZXNzLiBUbyBtZWFzdXJlIHRoZXNlIHBvdGVudGlhbCBlZmZlY3RzIGVhY2ggbW9kZWwgY29udGFpbmVkIHRoZSBmb2xsb3dpbmcgZml4ZWQgZWZmZWN0cyBhbmQgdGhlIHRocmVlLXdheSBpbnRlcmFjdGlvbiBiZXR3ZWVuIHRoZXNlIHZhcmlhYmxlczoKCkZvY2FsIGhhcGxvdHlwZTogdGhlIG10RE5BIGhhcGxvdHlwZSB0aGF0IGFuIGluZGl2aWR1YWwgY2Fycmllcy4KClNvY2lhbCBoYXBsb3R5cGU6IHRoZSBtdEROQSBoYXBsb3R5cGUgY2FycmllZCBieSBhIHNvY2lhbCBwYXJ0bmVyIGR1cmluZyBsYXJ2YWwgZGV2ZWxvcG1lbnQuCgpTZXg6IHRoZSBzZXggb2YgdGhlIGZvY2FsIGluZGl2aWR1YWwuIFRoZSBzb2NpYWwgcGFydG5lcidzIHNleCB3YXMgYWx3YXlzIG9wcG9zaXRlIHRvIHRoYXQgb2YgdGhlIGZvY2FsIGluZGl2aWR1YWwuCgoqKlJhbmRvbSBlZmZlY3RzKioKCkR1cGxpY2F0ZSBzdHJhaW46IEVhY2ggaGFwbG90eXBlIGhhcyBiZWVuIGludHJvZ3Jlc3NlZCBhbG9uZ3NpZGUgdGhlIF93XjExMTheXyBudWNsZWFyIGJhY2tncm91bmQgaW4gdHdvIGluZGVwZW5kZW50IGR1cGxpY2F0ZXMsIGNyZWF0aW5nIDEwIHRvdGFsIHN0cmFpbnMuIFdpdGhpbiBlYWNoIGJsb2NrIHdlIHJhbiBtdWx0aXBsZSByZXBsaWNhdGVzIHRoYXQgd2VyZSBtYWRlIHVwIG9mIGZsaWVzIGZyb20gdGhlIGZpcnN0IHNldCBvZiBzdHJhaW5zIChpLmUuIEJhcmNlbG9uYSAxLCBCcm93bnN2aWxsZSAxIGV0Yy4pLCB3aGlsZSB0aGUgb3RoZXIgaGFsZiB1c2VkIG9ubHkgZmxpZXMgZnJvbSB0aGUgc2Vjb25kIHNldCBvZiBzdHJhaW5zLiBUaGlzIHJhbmRvbSBlZmZlY3QgYWNjb3VudHMgZm9yIGFueSByZXNpZHVhbCBkaWZmZXJlbmNlcyBpbiB0aGUgbnVjbGVhciBnZW5vbWUsIGVwaWdlbm9tZSwgbWljcm9iaW9tZSBvciB2aWFsIGVudmlyb25tZW50IHRoYXQgbWF5IGhhdmUgYXJpc2VuIGJldHdlZW4gZHVwbGljYXRlcy4KCkJsb2NrOiBhY2NvdW50cyBmb3IgZGlmZmVyZW5jZXMgaW4gdGhlIHJlc3BvbnNlIHZhcmlhYmxlIGJldHdlZW4gZXhwZXJpbWVudGFsIGJsb2NrcyAoZS5nLiB0byB2YXJpYW5jZSBpbiB0ZW1wZXJhdHVyZSBvciBjb21wb3NpdGlvbiBvZiB0aGUgZmx5IGZvb2QpLiBJbiBvdXIgZXhwZXJpbWVudCBhIGJsb2NrIGNvbnRhaW5lZCBtdWx0aXBsZSByZXBsaWNhdGVzIGFuZCBhIHJlcGxpY2F0ZSB3YXMgbWFkZSB1cCBvZiAyNSBkaWZmZXJlbnQgY2VsbHMgZWFjaCBob3VzaW5nIGEgcGFpciBvZiBsYXJ2YWUuCgpEeWFkIElEOiBhY2NvdW50cyBmb3IgZGlmZmVyZW5jZXMgaW4gdGhlIHF1YWxpdHkgb2YgdGhlIGxhcnZhbCBlbnZpcm9ubWVudCBiZXR3ZWVuIHBhaXJzIG9mIGxhcnZhZS4gRm9yIGV4YW1wbGUsIHRoZSBtb2lzdHVyZSBjb250ZW50IG9mIHRoZSBmb29kIHZhcmllZCBiZXR3ZWVuIHBpcGV0dGUgdGlwcywgZGVzcGl0ZSBvdXIgYmVzdCBlZmZvcnRzIHRvIGtlZXAgdGhpcyB2YXJpYWJsZSBjb25zdGFudC4gIAoKKipNb2RlbCBldmFsdWF0aW9uKioKCkVhY2ggbW9kZWwgd2FzIGV2YWx1YXRlZCBhbmQgcmFua2VkIGJ5IEFJQ2MgdmFsdWVzIHVzaW5nIHRoZSBgZHJlZGdlYCBmdW5jdGlvbiwgZnJvbSB0aGUgYE11bWluYCBwYWNrYWdlLiBUaGVyZSB3YXMgcmFyZWx5IGEgc2luZ2xlIG1vZGVsIHRoYXQgd2FzIHVuZXF1aXZvY2FsbHkgdGhlIGJlc3QgZml0IHRvIHRoZSBkYXRhLCBzbyB3ZSBjb25kdWN0ZWQgbW9kZWwgYXZlcmFnaW5nIGZvciB0aGUgc2V0IG9mIG1vZGVscyB3aGVyZSBkZWx0YSB3YXMgPCA2LCBhcyBzdWdnZXN0ZWQgYnkgU3ltb25kcyBhbmQgTW91c3NhbGxpIFstQFJONDU1XS4gVGhlIHByZXNlbnQgc3R1ZHkgaXMgYSBwbGFubmVkIGV4cGVyaW1lbnQgdG8gbWVhc3VyZSB0aGUgZWZmZWN0IG9mIG10RE5BIG9uIGZpdG5lc3MsIHNvIHdlIGRlcml2ZWQgbW9kZWwgZXN0aW1hdGVzIGZyb20gdGhlIGNvbmRpdGlvbmFsIG1vZGVsIGF2ZXJhZ2VzLgoKJH4kCgoKIyMgTGFydmFsIGZpdG5lc3MgbWVhc3VyZXMKCiR+JAoKCiMjIyBFZ2cgdG8gYWR1bHQgdmlhYmlsaXR5IGFuYWx5c2lzCiogKiAqCgpUaGUgbW9kZWw6CgpfU3Vydml2YWwgfiBGb2NhbF9oYXBsb3R5cGUgKiBTb2NpYWxfaGFwbG90eXBlICogU2V4ICsgKDF8U3RyYWluKSArICgxfEJsb2NrKSArICgxfER5YWRfSUQpXwoKYGBge3Igc3Vydml2YWwgbW9kZWx9CgojIEZpdCB0aGUgZ2xvYmFsIG1vZGVsCgpzdXJ2aXZhbF9tb2RlbCA8LSBsbWU0OjpnbG1lcihTdXJ2aXZlZCB+IEZvY2FsX2hhcGxvdHlwZSAqIFNvY2lhbF9oYXBsb3R5cGUgKiBTZXggKyAoMXxTdHJhaW4pICsgKDF8QmxvY2spICsgKDF8RHlhZF9JRCksIGRhdGEgPSBzdXJ2aXZhbCwgZmFtaWx5ID0gImJpbm9taWFsIiwgY29udHJvbCA9IGdsbWVyQ29udHJvbChvcHRpbWl6ZXIgPSAiTmVsZGVyX01lYWQiLCBvcHRDdHJsPWxpc3QobWF4ZnVuPTEwMDAwMCkpLCBuYS5hY3Rpb24gPSBuYS5mYWlsKQoKYGBgCgojIyMjIE1vZGVsIGV2YWx1YXRpb24KCioqVGFibGUgUzIqKjogRXZhbHVhdGlvbiBvZiB0aGUgc3Vydml2b3JzaGlwIG1vZGVsLiBBbGwgcG9zc2libGUgbW9kZWxzIHdlcmUgZXZhbHVhdGVkIGZyb20gdGhlIGdsb2JhbCBtb2RlbCB0aGF0IGluY2x1ZGVkIGEgdGhyZWUtd2F5IGludGVyYWN0aW9uIGJldHdlZW4gZm9jYWwgaGFwbG90eXBlLCBzb2NpYWwgaGFwbG90eXBlIGFuZCBzZXgsIGFzIHdlbGwgYXMgdGhlIHJhbmRvbSBmYWN0b3JzIGR1cGxpY2F0ZSBzdHJhaW4sIGJsb2NrIGFuZCBkeWFkIElELiBBcyB0aGVyZSB3YXMgbm8gY2xlYXIgdG9wIG1vZGVsLCB0aGUgZmluYWwgbW9kZWwgd2FzIGNhbGN1bGF0ZWQgdmlhIG1vZGVsIGF2ZXJhZ2luZy4KCmBgYHtyIHN1cnZpdmFsIGRyZWRnZSB0YWJsZX0KCiMgQ29tcGFyZSBhbGwgcG9zc2libGUgY29tYmluYXRpb25zIG9mIG1vZGVscyAoZnJvbSB0aGUgZ2xvYmFsIG1vZGVsKQoKaWYoZmlsZS5leGlzdHMoInN1cnZpdmFsX2RyZWRnZS5yZHMiKSl7ICMgSWYgYWxyZWFkeSBkb25lLCBqdXN0IGxvYWQgdGhlIHJlc3VsdHMKICBzdXJ2aXZhbF9kcmVkZ2UgPC0gcmVhZFJEUygic3Vydml2YWxfZHJlZGdlLnJkcyIpCn0gZWxzZSB7c3Vydml2YWxfZHJlZGdlIDwtIGRyZWRnZShzdXJ2aXZhbF9tb2RlbCkgIyBJZiBub3QgYWxyZWFkeSBkb25lLCBydW4gYWxsIHRoZSBtb2RlbHMgYW5kIHNhdmUgdGhlIHJlc3VsdHMKbGFwcGx5KGMoInN1cnZpdmFsX2RyZWRnZSIpLCBzYXZlX2l0KQp9CgoKc3Vydml2YWxfdGFibGUgPC0gc3Vic2V0KHN1cnZpdmFsX2RyZWRnZSwgZGVsdGEgPCA2LCByZWNhbGMud2VpZ2h0cyA9IEZBTFNFKSAlPiUgYXMuZGF0YS5mcmFtZSgpCgpuYW1lcyhzdXJ2aXZhbF90YWJsZSlbbmFtZXMoc3Vydml2YWxfdGFibGUpID09ICIoSW50ZXJjZXB0KSJdIDwtICJJbnRlcmNlcHQiCm5hbWVzKHN1cnZpdmFsX3RhYmxlKVtuYW1lcyhzdXJ2aXZhbF90YWJsZSkgPT0gIkZvY2FsX2hhcGxvdHlwZSJdIDwtICJGb2NhbCBoYXBsb3R5cGUiCm5hbWVzKHN1cnZpdmFsX3RhYmxlKVtuYW1lcyhzdXJ2aXZhbF90YWJsZSkgPT0gIlNleCJdIDwtICJTZXgiCm5hbWVzKHN1cnZpdmFsX3RhYmxlKVtuYW1lcyhzdXJ2aXZhbF90YWJsZSkgPT0gIlNvY2lhbF9oYXBsb3R5cGUiXSA8LSAiU29jaWFsIGhhcGxvdHlwZSIKbmFtZXMoc3Vydml2YWxfdGFibGUpW25hbWVzKHN1cnZpdmFsX3RhYmxlKSA9PSAiRm9jYWxfaGFwbG90eXBlOlNleCJdIDwtICJGb2NhbCBoYXBsb3R5cGUgeCBTZXgiCm5hbWVzKHN1cnZpdmFsX3RhYmxlKVtuYW1lcyhzdXJ2aXZhbF90YWJsZSkgPT0gIkZvY2FsX2hhcGxvdHlwZTpTb2NpYWxfaGFwbG90eXBlIl0gPC0gIkZvY2FsIGhhcGxvdHlwZSB4IFNvY2lhbCBoYXBsb3R5cGUiCm5hbWVzKHN1cnZpdmFsX3RhYmxlKVtuYW1lcyhzdXJ2aXZhbF90YWJsZSkgPT0gIlNleDpTb2NpYWxfaGFwbG90eXBlIl0gPC0gIlNvY2lhbCBoYXBsb3R5cGUgeCBTZXgiCm5hbWVzKHN1cnZpdmFsX3RhYmxlKVtuYW1lcyhzdXJ2aXZhbF90YWJsZSkgPT0gIkZvY2FsX2hhcGxvdHlwZTpTZXg6U29jaWFsX2hhcGxvdHlwZSJdIDwtICJGb2NhbCBoYXBsb3R5cGUgeCBTb2NpYWwgaGFwbG90eXBlIHggU2V4IgpuYW1lcyhzdXJ2aXZhbF90YWJsZSlbbmFtZXMoc3Vydml2YWxfdGFibGUpID09ICJkZiJdIDwtICJEZWdyZWVzIG9mIGZyZWVkb20iCm5hbWVzKHN1cnZpdmFsX3RhYmxlKVtuYW1lcyhzdXJ2aXZhbF90YWJsZSkgPT0gImxvZ0xpayJdIDwtICJMb2cgbGlrZWxpaG9vZCIKbmFtZXMoc3Vydml2YWxfdGFibGUpW25hbWVzKHN1cnZpdmFsX3RhYmxlKSA9PSAiQUlDYyJdIDwtICJBSUNjIgpuYW1lcyhzdXJ2aXZhbF90YWJsZSlbbmFtZXMoc3Vydml2YWxfdGFibGUpID09ICJkZWx0YSJdIDwtICJEZWx0YSIKbmFtZXMoc3Vydml2YWxfdGFibGUpW25hbWVzKHN1cnZpdmFsX3RhYmxlKSA9PSAid2VpZ2h0Il0gPC0gIldlaWdodCIKCnBhbmRlcihzdXJ2aXZhbF90YWJsZSwgc3BsaXQuY2VsbCA9IDQwLCBzcGxpdC50YWJsZSA9IEluZikKYGBgCgokfiQKCgpSZWxhdGl2ZSB2YXJpYWJsZSBpbXBvcnRhbmNlIGZvciBlYWNoIG9mIHRoZSBwcmVkaWN0b3JzIGFuZCBpbnRlcmFjdGlvbnMgaW4gdGhlIHN1cnZpdmFsIG1vZGVsIHNldC4gUlZJIGNhbiBiZSBpbnRlcnByZXRlZCBhcyB0aGUgbGlrZWxpaG9vZCB0aGUgbW9kZWwgdGVybSBpcyBwcmVzZW50IGluIHRoZSBiZXN0IHBlcmZvcm1pbmcgbW9kZWwgZnJvbSB0aGUgaW5pdGlhbCBmdWxsIHNldCBvZiBwb3NzaWJsZSBtb2RlbHMuCgpgYGB7ciwgc3Vydml2YWwgUlZJfQoKIyBwcmVzZW50IHJlbGF0aXZlIHZhcmlhYmxlIGltcG9ydGFuY2UgaW4gYSB0YWJsZSAKCnN3KHN1cnZpdmFsX2RyZWRnZSkgJT4lCiAgYXMuZGF0YS5mcmFtZSgpICU+JQogIHBhbmRlcihzcGxpdC5jZWxsID0gNDAsIHNwbGl0LnRhYmxlID0gSW5mLCByb3VuZCA9IDMsIGNvbC5uYW1lcyA9ICJSVkkiKQpgYGAKCiR+JAoKCiMjIyMgTW9kZWwgYXZlcmFnaW5nCgoqKlRhYmxlIFMzKio6IEVmZmVjdHMgb2YgbXRETkEgYW5kIHNleCBvbiBlZ2ctdG8tYWR1bHQgdmlhYmlsaXR5LiAgQ29uZGl0aW9uYWwgZXN0aW1hdGVzIGZyb20gbW9kZWwgYXZlcmFnaW5nIHRoZSBmdWxsIGdlbmVyYWxpc2VkIGxpbmVhciBtaXhlZCBtb2RlbCBhcmUgc2hvd24uIE1vZGVscyB3ZXJlIGluY2x1ZGVkIGluIHRoZSBhdmVyYWdpbmcgc3Vic2V0IGlmIGRlbHRhIDwgNi4gQm9sZCByb3dzIGluZGljYXRlIHNpZ25pZmljYW50IGVmZmVjdHMuIAoKYGBge3Igc3Vydml2YWwgbW9kZWwgYXZlcmFnaW5nfQoKIyBNb2RlbCBhdmVyYWdlCgojIFdlIG5lZWQgdG8gY3JlYXRlIHRoZSB0b3Bfc3Vydml2YWxfbW9kZWxzIG9iamVjdCBhbmQgYXZlcmFnZSBmcm9tIHRoYXQgc28gdGhhdCB3ZSBjYW4gZ2V0IG1lYW4gZXN0aW1hdGVzIHN1Y2Nlc3NmdWxseSB1c2luZyBwcmVkaWN0KCksIGZpdHRlZCgpIG9yIGVlbWVhbnMoKQoKdG9wX3N1cnZpdmFsX21vZGVscyA8LSBnZXQubW9kZWxzKHN1cnZpdmFsX2RyZWRnZSwgc3Vic2V0ID0gZGVsdGEgPCA2KQoKc3Vydml2YWxfYXZnbSA8LSBtb2RlbC5hdmcodG9wX3N1cnZpdmFsX21vZGVscykKCiMgYXZlcmFnZSB0aGUgbW9kZWxzIHdpdGggZGVsdGEgPCA2CgpzdXJ2aXZhbF9DSXMgPC0gY29uZmludChzdXJ2aXZhbF9hdmdtKSAlPiUgYXMuZGF0YS5mcmFtZSgpCgpzdXJ2aXZhbF9lc3RpbWF0ZSA8LSBjb2VmVGFibGUoc3Vydml2YWxfYXZnbSkgJT4lIGFzLmRhdGEuZnJhbWUoKQoKc3Vydml2YWxfcF92YWx1ZXMgPC0gc3VtbWFyeShzdXJ2aXZhbF9hdmdtKSRjb2VmbWF0LnN1YnNldFssIDVdICU+JSBhcy5kYXRhLmZyYW1lKCkgJT4lIHJlbmFtZShwID0gIi4iKQoKc3Vydml2YWxfbW9kZWxfYXZnIDwtIGRhdGEuZnJhbWUoc3Vydml2YWxfZXN0aW1hdGUsIHN1cnZpdmFsX0NJcywgc3Vydml2YWxfcF92YWx1ZXMpICU+JSBzZWxlY3QoRXN0aW1hdGUsIFN0ZC4uRXJyb3IsICBYMi41Li4sIFg5Ny41Li4sIHApCgpyb3cubmFtZXMoc3Vydml2YWxfbW9kZWxfYXZnKSA8LSBjKCJJbnRlcmNlcHQiLCAiU2V4OiBNYWxlIiwgIkZvY2FsIGhhcGxvdHlwZTogQnJvd25zdmlsbGUiLCAiRm9jYWwgaGFwbG90eXBlOiBEYWhvbWV5IiwgIkZvY2FsIGhhcGxvdHlwZTogSXNyYWVsIiwgIkZvY2FsIGhhcGxvdHlwZTogU3dlZGVuIiwgIlNvY2lhbCBoYXBsb3R5cGU6IEJyb3duc3ZpbGxlIiwgIlNvY2lhbCBoYXBsb3R5cGU6IERhaG9tZXkiLCAiU29jaWFsIGhhcGxvdHlwZTogSXNyYWVsIiwgIlNvY2lhbCBoYXBsb3R5cGU6IFN3ZWRlbiIpCgpuYW1lcyhzdXJ2aXZhbF9tb2RlbF9hdmcpW25hbWVzKHN1cnZpdmFsX21vZGVsX2F2ZykgPT0gIkVzdGltYXRlIl0gPC0gIkNvbmRpdGlvbmFsIGF2ZXJhZ2UgZXN0aW1hdGUiCm5hbWVzKHN1cnZpdmFsX21vZGVsX2F2ZylbbmFtZXMoc3Vydml2YWxfbW9kZWxfYXZnKSA9PSAiU3RkLi5FcnJvciJdIDwtICJTdGFuZGFyZCBFcnJvciIKbmFtZXMoc3Vydml2YWxfbW9kZWxfYXZnKVtuYW1lcyhzdXJ2aXZhbF9tb2RlbF9hdmcpID09ICJYMi41Li4iXSA8LSAiMi41JSBJbnRlcnZhbCIKbmFtZXMoc3Vydml2YWxfbW9kZWxfYXZnKVtuYW1lcyhzdXJ2aXZhbF9tb2RlbF9hdmcpID09ICJYOTcuNS4uIl0gPC0gIjk3LjUlIEludGVydmFsIgoKcGFuZGVyKHN1cnZpdmFsX21vZGVsX2F2Zywgc3BsaXQuY2VsbCA9IDQwLCBzcGxpdC50YWJsZSA9IEluZiwgcm91bmQgPSAzKQoKIyBUaGUgZnVsbCBhdmVyYWdlIHByb3ZpZGVzIGEgcGFyYW1ldGVyIGF2ZXJhZ2UgYWNyb3NzIGFsbCBtb2RlbHMgY29uc2lkZXJlZCwgaW5jbHVkaW5nIG9uZXMgd2hlcmUgdGhlIHBhcmFtZXRlciBjb2VmZmljaWVudCBpcyBzZXQgdG8gMC4gVGhlIGNvbmRpdGlvbmFsIGF2ZXJhZ2UgcmVwb3J0cyBjb2VmZmljZW50cyBmb3Igb25seSB0aGUgbW9kZWxzIHdoZXJlIHRoZSBwYXJhbWV0ZXIgaXMgaW5jbHVkZWQuCgpgYGAKCiMjIyMgQ29tcGFyaXNvbiBvZiBmb2NhbCBhbmQgc29jaWFsIGhhcGxvdHlwZSBlZmZlY3Qgc2l6ZXMgey50YWJzZXR9CgpXaGlsZSBvdXIgZXhwZXJpbWVudCB3YXMgbm90IGRlc2lnbmVkIHRvIGNhbGN1bGF0ZSBlc3RpbWF0ZXMgb2YgY29udmVudGlvbmFsIHNlbGVjdGlvbiBhbmQgc29jaWFsIHNlbGVjdGlvbiwgd2UgcHJlc2VudCB0aGUgc3RhbmRhcmRpc2VkIGVmZmVjdCBzaXplIGZvciB0aGUgZGlmZmVyZW5jZSBpbiBtZWFuIGZpdG5lc3MgYmV0d2VlbiBoYXBsb3R5cGUgcGFpcnMsIGZvciBkaXJlY3QgYW5kIGluZGlyZWN0IGZpdG5lc3MgZWZmZWN0cy4gT3VyIGFpbSBpcyB0byBpbGx1c3RyYXRlIHRoYXQgdGhlIHNpemUgb2YgdGhlIGRpcmVjdCBhbmQgaW5kaXJlY3QgZWZmZWN0cyBvbiB2aWFiaWxpdHkgYXJlIG9mIHNpbWlsYXIgbWFnbml0dWRlcy4KCiMjIyMjIEZvY2FsIGhhcGxvdHlwZSBlZmZlY3Qgc2l6ZXMKCmBgYHtyfQojIEZpdCBhIHNpbXBsaWZpZWQgdmVyc2lvbiBvZiB0aGUgbW9kZSB3aXRob3V0IGludGVyYWN0aW9ucyB0aGF0IGNhbiBiZSB1c2VkIHdpdGggdGhlIGVtbWVhbnMoKSBmdW5jdGlvbi4gVGhpcyBtb2RlbCBpcyByZWFzb25hYmxlIGFzIHdlIGRldGVjdGVkIG5vIGV2aWRlbmNlIGZvciBhbiBpbnRlcmFjdGlvbiBiZXR3ZWVuIGFueSBvZiBvdXIgZml4ZWQgZWZmZWN0cyBpbiB0aGUgYWJvdmUgYW5hbHlzaXMuCgpzdXJ2aXZhbF9lbW1lYW5zIDwtIGdsbWVyKFN1cnZpdmVkIH4gRm9jYWxfaGFwbG90eXBlICsgU29jaWFsX2hhcGxvdHlwZSArIFNleCArICgxfFN0cmFpbikgKyAoMXxCbG9jaykgKyAoMXxEeWFkX0lEKSwgZGF0YSA9IHN1cnZpdmFsLCBmYW1pbHkgPSAiYmlub21pYWwiLCBjb250cm9sID0gZ2xtZXJDb250cm9sKG9wdGltaXplciA9ICJOZWxkZXJfTWVhZCIsIG9wdEN0cmw9bGlzdChtYXhmdW49MTAwMDAwKSksIG5hLmFjdGlvbiA9IG5hLmZhaWwpCgojIE5vdyBjcmVhdGUgdGhlIHBhaXJ3aXNlIGNvbXBhcmlzb25zIGZvciBmb2NhbCBoYXBsb3R5cGUKCnBhaXJzKGVtbWVhbnMoc3Vydml2YWxfZW1tZWFucywgfiBGb2NhbF9oYXBsb3R5cGUsIHR5cGUgPSAicmVzcG9uc2UiKSkgJT4lIAogIGFzX3RpYmJsZSgpICU+JSAKICBwYW5kZXIoc3BsaXQuY2VsbCA9IDQwLCBzcGxpdC50YWJsZSA9IEluZikKCmBgYAoKIyMjIyMgU29jaWFsIGhhcGxvdHlwZSBlZmZlY3Qgc2l6ZXMKCmBgYHtyfQojIE5vdyBmb3Igc29jaWFsIGhhcGxvdHlwZQoKcGFpcnMoZW1tZWFucyhzdXJ2aXZhbF9lbW1lYW5zLCB+IFNvY2lhbF9oYXBsb3R5cGUsIHR5cGUgPSAicmVzcG9uc2UiKSkgJT4lIAogIGFzX3RpYmJsZSgpICU+JSAKICBwYW5kZXIoc3BsaXQuY2VsbCA9IDQwLCBzcGxpdC50YWJsZSA9IEluZikKCmBgYAoKCiR+JAoKCiMjIyBEZXZlbG9wbWVudCB0aW1lIGFuYWx5c2lzCiogKiAqCgpUaGUgbW9kZWw6CgpfRGV2X3RpbWUgfiBGb2NhbF9oYXBsb3R5cGUgKiBTb2NpYWxfaGFwbG90eXBlICogU2V4ICsgKDF8U3RyYWluKSArICgxfEJsb2NrKSArICgxfER5YWRfSUQpXwoKYGBge3IgZGV2IHRpbWUgbW9kZWx9CgojIEZpdCB0aGUgbGluZWFyIG1vZGVsCgpkZXZfbW9kZWwgPC0gbG1lcihEZXZfdGltZSB+IEZvY2FsX2hhcGxvdHlwZSAqIFNvY2lhbF9oYXBsb3R5cGUgKiBTZXggKyAoMXxTdHJhaW4pICsgKDF8QmxvY2spICsgKDF8RHlhZF9JRCksIGxhcnZhbF9kZXZlbG9wbWVudCwgbmEuYWN0aW9uID0gbmEuZmFpbCwgUkVNTCA9IEZBTFNFKQoKYGBgCgojIyMjIE1vZGVsIGV2YWx1YXRpb24KCioqVGFibGUgUzQqKjogRXZhbHVhdGlvbiBvZiB0aGUgZGV2ZWxvcG1lbnQgdGltZSBtb2RlbC4gQWxsIHBvc3NpYmxlIG1vZGVscyB3ZXJlIGV2YWx1YXRlZCBmcm9tIHRoZSBnbG9iYWwgbW9kZWwgdGhhdCBpbmNsdWRlZCBhIHRocmVlLXdheSBpbnRlcmFjdGlvbiBiZXR3ZWVuIGZvY2FsIGhhcGxvdHlwZSwgc29jaWFsIGhhcGxvdHlwZSBhbmQgc2V4IGFzIHdlbGwgYXMgdGhlIHJhbmRvbSBmYWN0b3JzIGR1cGxpY2F0ZSBzdHJhaW4sIGJsb2NrIGFuZCBkeWFkIElELiBBcyB0aGVyZSB3YXMgbm8gY2xlYXIgdG9wIG1vZGVsLCB0aGUgZmluYWwgbW9kZWwgd2FzIGNhbGN1bGF0ZWQgdmlhIG1vZGVsIGF2ZXJhZ2luZy4KCmBgYHtyIGRldiB0aW1lIGRyZWRnZSB0YWJsZX0KIyBVc2UgZHJlZGdlIHRvIGNvbXBhcmUgYWxsIHBvc3NpYmxlIG1vZGVscyBkZXJpdmVkIGZyb20gdGhlIGdsb2JhbCBtb2RlbAoKRGV2X2RyZWRnZSA8LSBkcmVkZ2UoZGV2X21vZGVsKQoKZGV2ZWxvcG1lbnRfdGFibGUgPC0gc3Vic2V0KERldl9kcmVkZ2UsIGRlbHRhIDwgNiwgcmVjYWxjLndlaWdodHMgPSBGQUxTRSkgICU+JSBhcy5kYXRhLmZyYW1lKCkKCm5hbWVzKGRldmVsb3BtZW50X3RhYmxlKVtuYW1lcyhkZXZlbG9wbWVudF90YWJsZSkgPT0gIihJbnRlcmNlcHQpIl0gPC0gIkludGVyY2VwdCIKbmFtZXMoZGV2ZWxvcG1lbnRfdGFibGUpW25hbWVzKGRldmVsb3BtZW50X3RhYmxlKSA9PSAiRm9jYWxfaGFwbG90eXBlIl0gPC0gIkZvY2FsIGhhcGxvdHlwZSIKbmFtZXMoZGV2ZWxvcG1lbnRfdGFibGUpW25hbWVzKGRldmVsb3BtZW50X3RhYmxlKSA9PSAiU29jaWFsX2hhcGxvdHlwZSJdIDwtICJTb2NpYWwgaGFwbG90eXBlIgpuYW1lcyhkZXZlbG9wbWVudF90YWJsZSlbbmFtZXMoZGV2ZWxvcG1lbnRfdGFibGUpID09ICJGb2NhbF9oYXBsb3R5cGU6U2V4Il0gPC0gIkZvY2FsIGhhcGxvdHlwZSB4IFNleCIKbmFtZXMoZGV2ZWxvcG1lbnRfdGFibGUpW25hbWVzKGRldmVsb3BtZW50X3RhYmxlKSA9PSAiRm9jYWxfaGFwbG90eXBlOlNvY2lhbF9oYXBsb3R5cGUiXSA8LSAiRm9jYWwgaGFwbG90eXBlIHggU29jaWFsIGhhcGxvdHlwZSIKbmFtZXMoZGV2ZWxvcG1lbnRfdGFibGUpW25hbWVzKGRldmVsb3BtZW50X3RhYmxlKSA9PSAiU2V4OlNvY2lhbF9oYXBsb3R5cGUiXSA8LSAiU29jaWFsIGhhcGxvdHlwZSB4IFNleCIKbmFtZXMoZGV2ZWxvcG1lbnRfdGFibGUpW25hbWVzKGRldmVsb3BtZW50X3RhYmxlKSA9PSAiRm9jYWxfaGFwbG90eXBlOlNleDpTb2NpYWxfaGFwbG90eXBlIl0gPC0gIkZvY2FsIGhhcGxvdHlwZSB4IFNvY2lhbCBoYXBsb3R5cGUgeCBTZXgiCm5hbWVzKGRldmVsb3BtZW50X3RhYmxlKVtuYW1lcyhkZXZlbG9wbWVudF90YWJsZSkgPT0gImRmIl0gPC0gIkRlZ3JlZXMgb2YgZnJlZWRvbSIKbmFtZXMoZGV2ZWxvcG1lbnRfdGFibGUpW25hbWVzKGRldmVsb3BtZW50X3RhYmxlKSA9PSAibG9nTGlrIl0gPC0gIkxvZyBsaWtlbGlob29kIgpuYW1lcyhkZXZlbG9wbWVudF90YWJsZSlbbmFtZXMoZGV2ZWxvcG1lbnRfdGFibGUpID09ICJBSUNjIl0gPC0gIkFJQ2MiCm5hbWVzKGRldmVsb3BtZW50X3RhYmxlKVtuYW1lcyhkZXZlbG9wbWVudF90YWJsZSkgPT0gImRlbHRhIl0gPC0gIkRlbHRhIgpuYW1lcyhkZXZlbG9wbWVudF90YWJsZSlbbmFtZXMoZGV2ZWxvcG1lbnRfdGFibGUpID09ICJ3ZWlnaHQiXSA8LSAiV2VpZ2h0IgoKcGFuZGVyKGRldmVsb3BtZW50X3RhYmxlLCBzcGxpdC5jZWxsID0gNDAsIHNwbGl0LnRhYmxlID0gSW5mKQoKYGBgCgokfiQKCgpSZWxhdGl2ZSB2YXJpYWJsZSBpbXBvcnRhbmNlIGZvciBlYWNoIG9mIHRoZSBwcmVkaWN0b3JzIGFuZCBpbnRlcmFjdGlvbnMgaW4gdGhlIGRldmVsb3BtZW50IHRpbWUgbW9kZWwgc2V0LgoKYGBge3IsIGRldiB0aW1lIFJWSX0KCiMgcHJlc2VudCByZWxhdGl2ZSB2YXJpYWJsZSBpbXBvcnRhbmNlIGluIGEgdGFibGUgCgpzdyhEZXZfZHJlZGdlKSAlPiUKICBhcy5kYXRhLmZyYW1lKCkgJT4lCiAgcGFuZGVyKHNwbGl0LmNlbGwgPSA0MCwgc3BsaXQudGFibGUgPSBJbmYsIHJvdW5kID0gMywgY29sLm5hbWVzID0gIlJWSSIpCmBgYAoKJH4kCgoKIyMjIyBNb2RlbCBhdmVyYWdpbmcKCioqVGFibGUgUzUqKjogRWZmZWN0cyBvZiBtdEROQSBhbmQgc2V4IG9uIGVnZy10by1hZHVsdCBkZXZlbG9wbWVudCB0aW1lLiAgQ29uZGl0aW9uYWwgZXN0aW1hdGVzIGZyb20gbW9kZWwgYXZlcmFnaW5nIHRoZSBmdWxsIGdlbmVyYWxpc2VkIGxpbmVhciBtaXhlZCBtb2RlbCBhcmUgc2hvd24uIE1vZGVscyB3ZXJlIGluY2x1ZGVkIGluIHRoZSBhdmVyYWdpbmcgc3Vic2V0IGlmIGRlbHRhIDwgNi4gQm9sZCByb3dzIGluZGljYXRlIHNpZ25pZmljYW50IGVmZmVjdHMuCgpgYGB7ciBkZXYgdGltZSBtb2RlbCBhdmVyYWdpbmd9CgojIE1vZGVsIGF2ZXJhZ2luZwoKRGV2X3RpbWVfYXZnIDwtIChtb2RlbC5hdmcoRGV2X2RyZWRnZSwgc3Vic2V0ID0gZGVsdGEgPCA2KSkKCkRldl9DSXMgPC0gY29uZmludChEZXZfdGltZV9hdmcpICU+JSBhcy5kYXRhLmZyYW1lKCkKCkRldl9lc3RpbWF0ZSA8LSBjb2VmVGFibGUoRGV2X3RpbWVfYXZnKSAlPiUgYXMuZGF0YS5mcmFtZSgpCgpEZXZfcF92YWx1ZXMgPC0gc3VtbWFyeShEZXZfdGltZV9hdmcpJGNvZWZtYXQuc3Vic2V0WywgNV0gJT4lIGFzLmRhdGEuZnJhbWUoKSAlPiUgcmVuYW1lKHAgPSAiLiIpCgpEZXZfbW9kZWxfYXZnIDwtIGRhdGEuZnJhbWUoRGV2X2VzdGltYXRlLCBEZXZfQ0lzLCBEZXZfcF92YWx1ZXMpICU+JSBzZWxlY3QoRXN0aW1hdGUsIFN0ZC4uRXJyb3IsICBYMi41Li4sIFg5Ny41Li4sIHApCgpyb3cubmFtZXMoRGV2X21vZGVsX2F2ZykgPC0gYygiSW50ZXJjZXB0IiwgIlNleDogTWFsZSIsICJGb2NhbCBoYXBsb3R5cGU6IEJyb3duc3ZpbGxlIiwgIkZvY2FsIGhhcGxvdHlwZTogRGFob21leSIsICJGb2NhbCBoYXBsb3R5cGU6IElzcmFlbCIsICJGb2NhbCBoYXBsb3R5cGU6IFN3ZWRlbiIsICJTb2NpYWwgaGFwbG90eXBlOiBCcm93bnN2aWxsZSIsICJTb2NpYWwgaGFwbG90eXBlOiBEYWhvbWV5IiwgIlNvY2lhbCBoYXBsb3R5cGU6IElzcmFlbCIsICJTb2NpYWwgaGFwbG90eXBlOiBTd2VkZW4iKQoKbmFtZXMoRGV2X21vZGVsX2F2ZylbbmFtZXMoRGV2X21vZGVsX2F2ZykgPT0gIkVzdGltYXRlIl0gPC0gIkNvbmRpdGlvbmFsIGF2ZXJhZ2UgZXN0aW1hdGUiCm5hbWVzKERldl9tb2RlbF9hdmcpW25hbWVzKERldl9tb2RlbF9hdmcpID09ICJTdGQuLkVycm9yIl0gPC0gIlN0YW5kYXJkIEVycm9yIgpuYW1lcyhEZXZfbW9kZWxfYXZnKVtuYW1lcyhEZXZfbW9kZWxfYXZnKSA9PSAiWDIuNS4uIl0gPC0gIjIuNSUgSW50ZXJ2YWwiCm5hbWVzKERldl9tb2RlbF9hdmcpW25hbWVzKERldl9tb2RlbF9hdmcpID09ICJYOTcuNS4uIl0gPC0gIjk3LjUlIEludGVydmFsIgoKCnBhbmRlcihEZXZfbW9kZWxfYXZnLCBzcGxpdC5jZWxsID0gNDAsIHNwbGl0LnRhYmxlID0gSW5mLCBlbXBoYXNpemUuc3Ryb25nLnJvd3MgPSAyLCByb3VuZCA9IDMpCgpgYGAKCiMjIyMgQ29tcGFyaXNvbiBvZiBmb2NhbCBhbmQgc29jaWFsIGhhcGxvdHlwZSBlZmZlY3Qgc2l6ZXMgey50YWJzZXR9CgpXaGlsZSBvdXIgZXhwZXJpbWVudCB3YXMgbm90IGRlc2lnbmVkIHRvIGNhbGN1bGF0ZSBlc3RpbWF0ZXMgb2YgY29udmVudGlvbmFsIHNlbGVjdGlvbiBhbmQgc29jaWFsIHNlbGVjdGlvbiwgd2UgcHJlc2VudCB0aGUgc3RhbmRhcmRpc2VkIGVmZmVjdCBzaXplIGZvciB0aGUgZGlmZmVyZW5jZSBpbiBtZWFuIGZpdG5lc3MgYmV0d2VlbiBoYXBsb3R5cGUgcGFpcnMsIGZvciBkaXJlY3QgYW5kIGluZGlyZWN0IGZpdG5lc3MgZWZmZWN0cy4gT3VyIGFpbSBpcyB0byBpbGx1c3RyYXRlIHRoYXQgdGhlIHNpemUgb2YgdGhlIGRpcmVjdCBhbmQgaW5kaXJlY3QgZWZmZWN0cyBvbiBkZXZlbG9wbWVudCB0aW1lIGFyZSBvZiBzaW1pbGFyIG1hZ25pdHVkZXMuCgojIyMjIyBGb2NhbCBoYXBsb3R5cGUgZWZmZWN0IHNpemVzCgpgYGB7cn0KIyBGaXQgYSBzaW1wbGlmaWVkIHZlcnNpb24gb2YgdGhlIG1vZGUgd2l0aG91dCBpbnRlcmFjdGlvbnMgdGhhdCBjYW4gYmUgdXNlZCB3aXRoIHRoZSBlbW1lYW5zKCkgZnVuY3Rpb24uIFRoaXMgbW9kZWwgaXMgcmVhc29uYWJsZSBhcyB3ZSBkZXRlY3RlZCBubyBldmlkZW5jZSBmb3IgYW4gaW50ZXJhY3Rpb24gYmV0d2VlbiBhbnkgb2Ygb3VyIGZpeGVkIGVmZmVjdHMgaW4gdGhlIGFib3ZlIGFuYWx5c2lzLgoKZGV2X3RpbWVfZW1tZWFucyA8LSBsbWVyKERldl90aW1lIH4gRm9jYWxfaGFwbG90eXBlICsgU29jaWFsX2hhcGxvdHlwZSArIFNleCArICgxfFN0cmFpbikgKyAoMXxCbG9jaykgKyAoMXxEeWFkX0lEKSwgbGFydmFsX2RldmVsb3BtZW50LCBuYS5hY3Rpb24gPSBuYS5mYWlsLCBSRU1MID0gRkFMU0UpCgojIE5vdyBjcmVhdGUgdGhlIHBhaXJ3aXNlIGNvbXBhcmlzb25zIGZvciBmb2NhbCBoYXBsb3R5cGUKCnBhaXJzKGVtbWVhbnMoZGV2X3RpbWVfZW1tZWFucywgfiBGb2NhbF9oYXBsb3R5cGUsIHR5cGUgPSAicmVzcG9uc2UiKSkgJT4lIAogIGFzX3RpYmJsZSgpICU+JSAKICBwYW5kZXIoc3BsaXQuY2VsbCA9IDQwLCBzcGxpdC50YWJsZSA9IEluZikKCmBgYAoKIyMjIyMgU29jaWFsIGhhcGxvdHlwZSBlZmZlY3Qgc2l6ZXMKCmBgYHtyfQojIE5vdyBmb3Igc29jaWFsIGhhcGxvdHlwZQoKcGFpcnMoZW1tZWFucyhkZXZfdGltZV9lbW1lYW5zLCB+IFNvY2lhbF9oYXBsb3R5cGUsIHR5cGUgPSAicmVzcG9uc2UiKSkgJT4lIAogIGFzX3RpYmJsZSgpICU+JSAKICBwYW5kZXIoc3BsaXQuY2VsbCA9IDQwLCBzcGxpdC50YWJsZSA9IEluZikKCmBgYAoKCiR+JAoKCiMjIEFkdWx0IGZpdG5lc3MgbWVhc3VyZXMKCiR+JAoKCiMjIyBCb2R5IHNpemUgYW5hbHlzaXMKKiAqICoKCldlIHVzZSB3aW5nIGxlbmd0aCBhcyBhIHByb3h5IGZvciBhZHVsdCBib2R5IHNpemUuCgpUaGUgbW9kZWw6CgpfV2luZ19sZW5ndGggfiBGb2NhbF9oYXBsb3R5cGUgKiBTb2NpYWxfaGFwbG90eXBlICogU2V4ICsgKDF8U3RyYWluKSArICgxfEJsb2NrKSArICgxfER5YWRfSUQpXwoKCmBgYHtyIHNpemUgbW9kZWx9Cgpib2R5X3NpemVfbW9kZWwgPC0gbG1lcihXaW5nX2xlbmd0aCB+IEZvY2FsX2hhcGxvdHlwZSAqIFNvY2lhbF9oYXBsb3R5cGUgKiBTZXggKyAoMXxTdHJhaW4pICsgKDF8QmxvY2spICsgKDF8RHlhZF9JRCksIGJvZHlfc2l6ZSwgbmEuYWN0aW9uID0gbmEuZmFpbCwgUkVNTCA9IEZBTFNFKQoKYGBgCgojIyMjIE1vZGVsIGV2YWx1YXRpb24KCioqVGFibGUgUzYqKjogRXZhbHVhdGlvbiBvZiB0aGUgd2luZyBsZW5ndGggbW9kZWwuIEFsbCBwb3NzaWJsZSBtb2RlbHMgd2VyZSBldmFsdWF0ZWQgZnJvbSB0aGUgZ2xvYmFsIG1vZGVsIHRoYXQgaW5jbHVkZWQgYSB0aHJlZS13YXkgaW50ZXJhY3Rpb24gYmV0d2VlbiBmb2NhbCBoYXBsb3R5cGUsIHNvY2lhbCBoYXBsb3R5cGUgYW5kIHNleCwgYXMgd2VsbCBhcyB0aGUgcmFuZG9tIGZhY3RvcnMgZHVwbGljYXRlIHN0cmFpbiwgYmxvY2sgYW5kIGR5YWQgSUQuIFRoZXJlIHdhcyBhIGNsZWFyIHRvcCBtb2RlbDsgY29lZmZpY2llbnRzIGFyZSBkaXNwbGF5ZWQgaW4gVGFibGUgUzcuCmBgYHtyIHNpemUgZHJlZGdlIHRhYmxlfQoKIyBDb21wYXJlIGFsbCBwb3NzaWJsZSBjb21iaW5hdGlvbnMgb2YgbW9kZWxzIChmcm9tIHRoZSBnbG9iYWwgbW9kZWwpCgpib2R5X3NpemVfZHJlZGdlIDwtIGRyZWRnZShib2R5X3NpemVfbW9kZWwpCgpzaXplX3RhYmxlIDwtIHN1YnNldChib2R5X3NpemVfZHJlZGdlLCBkZWx0YSA8IDYsIHJlY2FsYy53ZWlnaHRzID0gRkFMU0UpICU+JSBhcy5kYXRhLmZyYW1lKCkKCgpuYW1lcyhzaXplX3RhYmxlKVtuYW1lcyhzaXplX3RhYmxlKSA9PSAiKEludGVyY2VwdCkiXSA8LSAiSW50ZXJjZXB0IgpuYW1lcyhzaXplX3RhYmxlKVtuYW1lcyhzaXplX3RhYmxlKSA9PSAiRm9jYWxfaGFwbG90eXBlIl0gPC0gIkZvY2FsIGhhcGxvdHlwZSIKbmFtZXMoc2l6ZV90YWJsZSlbbmFtZXMoc2l6ZV90YWJsZSkgPT0gIlNleCJdIDwtICJTZXgiCm5hbWVzKHNpemVfdGFibGUpW25hbWVzKHNpemVfdGFibGUpID09ICJTb2NpYWxfaGFwbG90eXBlIl0gPC0gIlNvY2lhbCBoYXBsb3R5cGUiCm5hbWVzKHNpemVfdGFibGUpW25hbWVzKHNpemVfdGFibGUpID09ICJGb2NhbF9oYXBsb3R5cGU6U2V4Il0gPC0gIkZvY2FsIGhhcGxvdHlwZSB4IFNleCIKbmFtZXMoc2l6ZV90YWJsZSlbbmFtZXMoc2l6ZV90YWJsZSkgPT0gIkZvY2FsX2hhcGxvdHlwZTpTb2NpYWxfaGFwbG90eXBlIl0gPC0gIkZvY2FsIGhhcGxvdHlwZSB4IFNvY2lhbCBoYXBsb3R5cGUiCm5hbWVzKHNpemVfdGFibGUpW25hbWVzKHNpemVfdGFibGUpID09ICJTZXg6U29jaWFsX2hhcGxvdHlwZSJdIDwtICJTb2NpYWwgaGFwbG90eXBlIHggU2V4IgpuYW1lcyhzaXplX3RhYmxlKVtuYW1lcyhzaXplX3RhYmxlKSA9PSAiRm9jYWxfaGFwbG90eXBlOlNleDpTb2NpYWxfaGFwbG90eXBlIl0gPC0gIkZvY2FsIGhhcGxvdHlwZSB4IFNvY2lhbCBoYXBsb3R5cGUgeCBTZXgiCm5hbWVzKHNpemVfdGFibGUpW25hbWVzKHNpemVfdGFibGUpID09ICJkZiJdIDwtICJEZWdyZWVzIG9mIGZyZWVkb20iCm5hbWVzKHNpemVfdGFibGUpW25hbWVzKHNpemVfdGFibGUpID09ICJsb2dMaWsiXSA8LSAiTG9nIGxpa2VsaWhvb2QiCm5hbWVzKHNpemVfdGFibGUpW25hbWVzKHNpemVfdGFibGUpID09ICJBSUNjIl0gPC0gIkFJQ2MiCm5hbWVzKHNpemVfdGFibGUpW25hbWVzKHNpemVfdGFibGUpID09ICJkZWx0YSJdIDwtICJEZWx0YSIKbmFtZXMoc2l6ZV90YWJsZSlbbmFtZXMoc2l6ZV90YWJsZSkgPT0gIndlaWdodCJdIDwtICJXZWlnaHQiCgpwYW5kZXIoc2l6ZV90YWJsZSwgc3BsaXQuY2VsbCA9IDQwLCBzcGxpdC50YWJsZSA9IEluZikKCmBgYAoKJH4kCgoKUmVsYXRpdmUgdmFyaWFibGUgaW1wb3J0YW5jZSBmb3IgZWFjaCBvZiB0aGUgcHJlZGljdG9ycyBhbmQgaW50ZXJhY3Rpb25zIGluIHRoZSB3aW5nIGxlbmd0aCBtb2RlbCBzZXQuCgpgYGB7ciwgc2l6ZSBSVkl9CgojIHByZXNlbnQgcmVsYXRpdmUgdmFyaWFibGUgaW1wb3J0YW5jZSBpbiBhIHRhYmxlIAoKc3coYm9keV9zaXplX2RyZWRnZSkgJT4lCiAgYXMuZGF0YS5mcmFtZSgpICU+JQogIHBhbmRlcihzcGxpdC5jZWxsID0gNDAsIHNwbGl0LnRhYmxlID0gSW5mLCByb3VuZCA9IDMsIGNvbC5uYW1lcyA9ICJSVkkiKQpgYGAKCiR+JAoKCgojIyMjIEJlc3QgZml0dGluZyBtb2RlbAoKT25lIG1vZGVsIHdhcyByZXRhaW5lZCBpbiB0aGUgZGVsdGEgPCA2IHN1YnNldDsgbW9kZWwgYXZlcmFnaW5nIGlzIG5vdCByZXF1aXJlZC4KCioqVGFibGUgUzcqKjogRWZmZWN0cyBvZiBtdEROQSBhbmQgc2V4IG9uIHdpbmcgbGVuZ3RoLiBSZXN1bHRzIGZyb20gdGhlIGJlc3QgZml0dGluZyBnZW5lcmFsaXNlZCBsaW5lYXIgbWl4ZWQgbW9kZWwgYXJlIHNob3duLiBCb2xkIHJvd3MgaW5kaWNhdGUgc2lnbmlmaWNhbnQgZWZmZWN0cy4KCmBgYHtyIHNpemUgYmVzdCBtb2RlbH0KCiMgRml0IHRoZSB0b3AgbW9kZWwKCmJvZHlfc2l6ZV9tb2RlbF9maW5hbCA8LSBsbWVyKFdpbmdfbGVuZ3RoIH4gU2V4ICsgKDF8U3RyYWluKSArICgxfEJsb2NrKSArICgxfER5YWRfSUQpLCBib2R5X3NpemUsIG5hLmFjdGlvbiA9IG5hLmZhaWwsIFJFTUwgPSBGQUxTRSkKClNpemVfQ0lzIDwtIGNvbmZpbnQoYm9keV9zaXplX21vZGVsX2ZpbmFsKSAlPiUKICBhcy5kYXRhLmZyYW1lKCkgJT4lIAogIHNsaWNlKDU6NikKClNpemVfZXN0aW1hdGUgPC0gY29lZlRhYmxlKGJvZHlfc2l6ZV9tb2RlbF9maW5hbCkgJT4lIGFzLmRhdGEuZnJhbWUoKQoKU2l6ZV9wX3ZhbHVlcyA8LSBzdW1tYXJ5KGJvZHlfc2l6ZV9tb2RlbF9maW5hbCkkY29lZmZpY2llbnRzWywgNV0gJT4lIGFzLmRhdGEuZnJhbWUoKSAlPiUgcmVuYW1lKHAgPSAiLiIpCgpTaXplX21vZGVsX2F2ZyA8LSBkYXRhLmZyYW1lKFNpemVfZXN0aW1hdGUsIFNpemVfQ0lzLCBTaXplX3BfdmFsdWVzKSAlPiUgc2VsZWN0KEVzdGltYXRlLCBTdGQuLkVycm9yLCAgWDIuNS4uLCBYOTcuNS4uLCBwKQoKcm93Lm5hbWVzKFNpemVfbW9kZWxfYXZnKSA8LSBjKCJJbnRlcmNlcHQiLCAiU2V4OiBNYWxlIikKCm5hbWVzKFNpemVfbW9kZWxfYXZnKVtuYW1lcyhTaXplX21vZGVsX2F2ZykgPT0gIkVzdGltYXRlIl0gPC0gIkNvbmRpdGlvbmFsIGF2ZXJhZ2UgZXN0aW1hdGUiCm5hbWVzKFNpemVfbW9kZWxfYXZnKVtuYW1lcyhTaXplX21vZGVsX2F2ZykgPT0gIlN0ZC4uRXJyb3IiXSA8LSAiU3RhbmRhcmQgRXJyb3IiCm5hbWVzKFNpemVfbW9kZWxfYXZnKVtuYW1lcyhTaXplX21vZGVsX2F2ZykgPT0gIlgyLjUuLiJdIDwtICIyLjUlIEludGVydmFsIgpuYW1lcyhTaXplX21vZGVsX2F2ZylbbmFtZXMoU2l6ZV9tb2RlbF9hdmcpID09ICJYOTcuNS4uIl0gPC0gIjk3LjUlIEludGVydmFsIgoKcGFuZGVyKFNpemVfbW9kZWxfYXZnLCBzcGxpdC5jZWxsID0gNDAsIHNwbGl0LnRhYmxlID0gSW5mLCBlbXBoYXNpemUuc3Ryb25nLnJvd3MgPSAoMiksIHJvdW5kID0gMykKCmBgYAoKJH4kCgojIyMjIENvbXBhcmlzb24gb2YgZm9jYWwgYW5kIHNvY2lhbCBoYXBsb3R5cGUgZWZmZWN0IHNpemVzIHsudGFic2V0fQoKV2hpbGUgb3VyIGV4cGVyaW1lbnQgd2FzIG5vdCBkZXNpZ25lZCB0byBjYWxjdWxhdGUgZXN0aW1hdGVzIG9mIGNvbnZlbnRpb25hbCBzZWxlY3Rpb24gYW5kIHNvY2lhbCBzZWxlY3Rpb24sIHdlIHByZXNlbnQgdGhlIHN0YW5kYXJkaXNlZCBlZmZlY3Qgc2l6ZSBmb3IgdGhlIGRpZmZlcmVuY2UgaW4gbWVhbiBmaXRuZXNzIGJldHdlZW4gaGFwbG90eXBlIHBhaXJzLCBmb3IgZGlyZWN0IGFuZCBpbmRpcmVjdCBmaXRuZXNzIGVmZmVjdHMuIE91ciBhaW0gaXMgdG8gaWxsdXN0cmF0ZSB0aGF0IHRoZSBzaXplIG9mIHRoZSBkaXJlY3QgYW5kIGluZGlyZWN0IGVmZmVjdHMgb24gYm9keSBzaXplIGFyZSBtaW5pbWFsIGFuZCBvZiBzaW1pbGFyIG1hZ25pdHVkZXMuCgojIyMjIyBGb2NhbCBoYXBsb3R5cGUgZWZmZWN0IHNpemVzCgpgYGB7cn0KIyBGaXQgYSBzaW1wbGlmaWVkIHZlcnNpb24gb2YgdGhlIG1vZGUgd2l0aG91dCBpbnRlcmFjdGlvbnMgdGhhdCBjYW4gYmUgdXNlZCB3aXRoIHRoZSBlbW1lYW5zKCkgZnVuY3Rpb24uIFRoaXMgbW9kZWwgaXMgcmVhc29uYWJsZSBhcyB3ZSBkZXRlY3RlZCBubyBldmlkZW5jZSBmb3IgYW4gaW50ZXJhY3Rpb24gYmV0d2VlbiBhbnkgb2Ygb3VyIGZpeGVkIGVmZmVjdHMgaW4gdGhlIGFib3ZlIGFuYWx5c2lzLgoKc2l6ZV9lbW1lYW5zIDwtIGxtZXIoV2luZ19sZW5ndGggfiBGb2NhbF9oYXBsb3R5cGUgKyBTb2NpYWxfaGFwbG90eXBlICsgU2V4ICsgKDF8U3RyYWluKSArICgxfEJsb2NrKSArICgxfER5YWRfSUQpLCBib2R5X3NpemUsIG5hLmFjdGlvbiA9IG5hLmZhaWwsIFJFTUwgPSBGQUxTRSkKCiMgTm93IGNyZWF0ZSB0aGUgcGFpcndpc2UgY29tcGFyaXNvbnMgZm9yIGZvY2FsIGhhcGxvdHlwZQoKcGFpcnMoZW1tZWFucyhzaXplX2VtbWVhbnMsIH4gRm9jYWxfaGFwbG90eXBlLCB0eXBlID0gInJlc3BvbnNlIikpICU+JSAKICBhc190aWJibGUoKSAlPiUgCiAgcGFuZGVyKHNwbGl0LmNlbGwgPSA0MCwgc3BsaXQudGFibGUgPSBJbmYpCgpgYGAKCiMjIyMjIFNvY2lhbCBoYXBsb3R5cGUgZWZmZWN0IHNpemVzCgpgYGB7cn0KIyBOb3cgZm9yIHNvY2lhbCBoYXBsb3R5cGUKCnBhaXJzKGVtbWVhbnMoc2l6ZV9lbW1lYW5zLCB+IFNvY2lhbF9oYXBsb3R5cGUsIHR5cGUgPSAicmVzcG9uc2UiKSkgJT4lIAogIGFzX3RpYmJsZSgpICU+JSAKICBwYW5kZXIoc3BsaXQuY2VsbCA9IDQwLCBzcGxpdC50YWJsZSA9IEluZikKCmBgYAoKCiR+JAoKCiMjIyBGZW1hbGUgcmVwcm9kdWN0aXZlIG91dHB1dAoqICogKgoKVG8gZWZmZWN0aXZlbHkgYWNjb21tb2RhdGUgemVyby1pbmZsYXRpb24sIHdlIG1vZGVsbGVkIGZlbWFsZSBvZmZzcHJpbmcgcHJvZHVjdGlvbiB1c2luZyB0aGUgYGdsbW1UTUJgIHBhY2thZ2UgW0BSTjYwMl0uIFRoaXMgcGFja2FnZSBhbGxvd3MgdXMgdG8gZml0IGh1cmRsZSBtb2RlbHMgYW5kIHplcm8taW5mbGF0ZWQgbW9kZWxzLgoKV2UgYW5hbHlzZWQgdGhlIG51bWJlciBvZiBvZmZzcHJpbmcgcHJvZHVjZWQgYnkgZmVtYWxlcyB1c2luZyBhIGh1cmRsZSBtb2RlbCB3aXRoIG5lZ2F0aXZlIGJpbm9taWFsIGVycm9ycy4gVGhpcyBhcHByb2FjaCBhbGxvd2VkIHVzIHRvIGFuc3dlciB0d28gcXVlc3Rpb25zOiAoMSkgZGlkIG10RE5BIGFmZmVjdCB0aGUgaW5jaWRlbmNlIG9mIGZhaWxpbmcgdG8gcHJvZHVjZSBhbnkgb2Zmc3ByaW5nPyBhbmQgKDIpIGZvciBmZW1hbGVzIHRoYXQgcHJvZHVjZWQgYXQgbGVhc3Qgb25lIG9mZnNwcmluZywgd2FzIHRoZSBudW1iZXIgb2Ygb2Zmc3ByaW5nIHByb2R1Y2VkIGFmZmVjdGVkIGJ5IG10RE5BPwoKVGhlIG1vZGVsOgoKX01hdGVybmFsX3RvdGFsX29mZnNwcmluZyB+IEZvY2FsX2hhcGxvdHlwZSAqIFNvY2lhbF9oYXBsb3R5cGUgKyAoMXxTdHJhaW4pICsgKDF8QmxvY2spXwoKYGBge3IgZmVtYWxlIG1vZGVsfQpmZW1hbGVfaHVyZGxlX21vZGVsIDwtIGdsbW1UTUIoTWF0ZXJuYWxfdG90YWxfb2Zmc3ByaW5nIH4gU29jaWFsX2hhcGxvdHlwZSAqIEZvY2FsX2hhcGxvdHlwZSArICgxfFN0cmFpbikgKyAoMXxCbG9jayksIGRhdGEgPSBmZW1hbGVfcmVwcm9kdWN0aXZlX291dHB1dCwgZmFtaWx5ID0gbGlzdChmYW1pbHk9InRydW5jYXRlZF9uYmlub20xIixsaW5rPSJsb2ciKSwgemlmb3JtdWxhID0gfi4sIG5hLmFjdGlvbiA9IG5hLmZhaWwsIFJFTUwgPSBGQUxTRSkKYGBgCgojIyMjIE1vZGVsIGV2YWx1YXRpb24KCioqVGFibGUgUzgqKjogRXZhbHVhdGlvbiBvZiB0aGUgZmVtYWxlIHJlcHJvZHVjdGl2ZSBvdXRwdXQgbW9kZWwuIEFsbCBwb3NzaWJsZSBtb2RlbHMgd2VyZSBldmFsdWF0ZWQgZnJvbSB0aGUgZ2xvYmFsIG1vZGVsIHRoYXQgaW5jbHVkZWQgYW4gaW50ZXJhY3Rpb24gYmV0d2VlbiBmb2NhbCBoYXBsb3R5cGUgYW5kIHNvY2lhbCBoYXBsb3R5cGUgYW5kIHRoZSByYW5kb20gZmFjdG9ycyBzdHJhaW4gYW5kIGJsb2NrLiBBcyB0aGVyZSB3YXMgbm8gY2xlYXIgdG9wIG1vZGVsLCB0aGUgZmluYWwgbW9kZWwgd2FzIGNhbGN1bGF0ZWQgdmlhIG1vZGVsIGF2ZXJhZ2luZy4gVGhlIHplcm8taW5mbGF0ZWQgcmVzdWx0cyByZWxhdGUgdG8gd2hldGhlciBhIGZlbWFsZSBwcm9kdWNlZCBhbnkgb2Zmc3ByaW5nLCB3aGlsZSB0aGUgY29uZGl0aW9uYWwgcmVzdWx0cyByZWxhdGUgdG8gdGhlIG51bWJlciBvZiBvZmZzcHJpbmcgcHJvZHVjZWQgYnkgZmVydGlsZSBmZW1hbGVzLgpgYGB7ciBmZW1hbGUgZHJlZGdlIHRhYmxlfQojIENvbXBhcmUgYWxsIHBvc3NpYmxlIGNvbWJpbmF0aW9ucyBvZiBtb2RlbHMgKGZyb20gdGhlIGdsb2JhbCBtb2RlbCkKCmlmKGZpbGUuZXhpc3RzKCJmZW1hbGVfZHJlZGdlLnJkcyIpKXsgIyBJZiBhbHJlYWR5IGRvbmUsIGp1c3QgbG9hZCB0aGUgcmVzdWx0cwogIGZlbWFsZV9kcmVkZ2UgPC0gcmVhZFJEUygiZmVtYWxlX2RyZWRnZS5yZHMiKQp9IGVsc2Uge2ZlbWFsZV9kcmVkZ2UgPC0gZHJlZGdlKGZlbWFsZV9odXJkbGVfbW9kZWwpICAgICAgICAgICAgICAgICAgIyBJZiBub3QgYWxyZWFkeSBkb25lLCBydW4gYWxsIHRoZSBtb2RlbHMgYW5kIHNhdmUgdGhlIHJlc3VsdHMKbGFwcGx5KGMoImZlbWFsZV9kcmVkZ2UiKSwgc2F2ZV9pdCkKfQoKCmZlbWFsZV90YWJsZSA8LSBzdWJzZXQoZmVtYWxlX2RyZWRnZSwgZGVsdGEgPCA2LCByZWNhbGMud2VpZ2h0cyA9IEZBTFNFKSAlPiUgYXMuZGF0YS5mcmFtZSgpCgpuYW1lcyhmZW1hbGVfdGFibGUpW25hbWVzKGZlbWFsZV90YWJsZSkgPT0gImNvbmQoKEludCkpIl0gPC0gIkNvbmRpdGlvbmFsIGludGVyY2VwdCIKbmFtZXMoZmVtYWxlX3RhYmxlKVtuYW1lcyhmZW1hbGVfdGFibGUpID09ICJ6aSgoSW50KSkiXSA8LSAiWmVyby1pbmZsYXRlZCBpbnRlcmNlcHQiCm5hbWVzKGZlbWFsZV90YWJsZSlbbmFtZXMoZmVtYWxlX3RhYmxlKSA9PSAiZGlzcCgoSW50KSkiXSA8LSAiRGlzcGVyc2lvbiBmYWN0b3IgaW50ZXJjZXB0IgpuYW1lcyhmZW1hbGVfdGFibGUpW25hbWVzKGZlbWFsZV90YWJsZSkgPT0gImNvbmQoRm9jYWxfaGFwbG90eXBlKSJdIDwtICJDb25kaXRpb25hbCAoRm9jYWwgaGFwbG90eXBlKSIKbmFtZXMoZmVtYWxlX3RhYmxlKVtuYW1lcyhmZW1hbGVfdGFibGUpID09ICJjb25kKFNvY2lhbF9oYXBsb3R5cGUpIl0gPC0gIkNvbmRpdGlvbmFsIChTb2NpYWwgaGFwbG90eXBlKSIKbmFtZXMoZmVtYWxlX3RhYmxlKVtuYW1lcyhmZW1hbGVfdGFibGUpID09ICJjb25kKEZvY2FsX2hhcGxvdHlwZTpTb2NpYWxfaGFwbG90eXBlKSJdIDwtICJDb25kaXRpb25hbCAoRm9jYWwgaGFwbG90eXBlIHggU29jaWFsIGhhcGxvdHlwZSkiCm5hbWVzKGZlbWFsZV90YWJsZSlbbmFtZXMoZmVtYWxlX3RhYmxlKSA9PSAiemkoRm9jYWxfaGFwbG90eXBlKSJdIDwtICJaZXJvLWluZmxhdGVkIChGb2NhbCBoYXBsb3R5cGUpIgpuYW1lcyhmZW1hbGVfdGFibGUpW25hbWVzKGZlbWFsZV90YWJsZSkgPT0gInppKFNvY2lhbF9oYXBsb3R5cGUpIl0gPC0gIlplcm8taW5mbGF0ZWQgKFNvY2lhbCBoYXBsb3R5cGUpIgpuYW1lcyhmZW1hbGVfdGFibGUpW25hbWVzKGZlbWFsZV90YWJsZSkgPT0gInppKEZvY2FsX2hhcGxvdHlwZTpTb2NpYWxfaGFwbG90eXBlKSJdIDwtICJaZXJvLWluZmxhdGVkIChGb2NhbCBoYXBsb3R5cGUgeCBTb2NpYWwgaGFwbG90eXBlKSIKbmFtZXMoZmVtYWxlX3RhYmxlKVtuYW1lcyhmZW1hbGVfdGFibGUpID09ICJkZiJdIDwtICJEZWdyZWVzIG9mIGZyZWVkb20iCm5hbWVzKGZlbWFsZV90YWJsZSlbbmFtZXMoZmVtYWxlX3RhYmxlKSA9PSAibG9nTGlrIl0gPC0gIkxvZyBsaWtlbGlob29kIgpuYW1lcyhmZW1hbGVfdGFibGUpW25hbWVzKGZlbWFsZV90YWJsZSkgPT0gIkFJQ2MiXSA8LSAiQUlDYyIKbmFtZXMoZmVtYWxlX3RhYmxlKVtuYW1lcyhmZW1hbGVfdGFibGUpID09ICJkZWx0YSJdIDwtICJEZWx0YSIKbmFtZXMoZmVtYWxlX3RhYmxlKVtuYW1lcyhmZW1hbGVfdGFibGUpID09ICJ3ZWlnaHQiXSA8LSAiV2VpZ2h0IgoKcGFuZGVyKGZlbWFsZV90YWJsZSwgc3BsaXQuY2VsbCA9IDQwLCBzcGxpdC50YWJsZSA9IEluZikKCmBgYAoKJH4kCgoKUmVsYXRpdmUgdmFyaWFibGUgaW1wb3J0YW5jZSBmb3IgZWFjaCBvZiB0aGUgcHJlZGljdG9ycyBhbmQgaW50ZXJhY3Rpb25zIGluIHRoZSBmZW1hbGUgcmVwcm9kdWN0aXZlIG91dHB1dCBtb2RlbCBzZXQuCgpgYGB7ciwgZmVtYWxlIFJWSX0KCiMgcHJlc2VudCByZWxhdGl2ZSB2YXJpYWJsZSBpbXBvcnRhbmNlIGluIGEgdGFibGUgCgpzdyhmZW1hbGVfZHJlZGdlKSAlPiUKICBhcy5kYXRhLmZyYW1lKCkgJT4lCiAgcGFuZGVyKHNwbGl0LmNlbGwgPSA0MCwgc3BsaXQudGFibGUgPSBJbmYsIHJvdW5kID0gMywgY29sLm5hbWVzID0gIlJWSSIpCmBgYAoKJH4kCgoKCiMjIyMgTW9kZWwgYXZlcmFnaW5nCgpaaSAoemVyby1odXJkbGUgcmVxdWlyZW1lbnQpIGFuZCBjb25kaXRpb25hbCAoYWZ0ZXIgaHVyZGxlKSAgbW9kZWwgY29lZmZpY2llbnRzLCBzdGFuZGFyZCBlcnJvciBhbmQgOTUlIGNvbmZpZGVuY2UgbGltaXRzIGxpc3RlZCBpbiAqKlRhYmxlIDEqKiBhcmUgc2hvd24gZm9yIHRoZSBmZW1hbGUgb2Zmc3ByaW5nIHByb2R1Y3Rpb24gYXZlcmFnZWQgbW9kZWwuIEJvbGQgcm93cyBpbmRpY2F0ZSBzaWduaWZpY2FudCBlZmZlY3RzLiAKCmBgYHtyIGZlbWFsZSBtb2RlbCBhdmVyYWdpbmd9CgojIFdlIG5lZWQgdG8gY3JlYXRlIHRoZSB0b3Bfc3Vydml2YWxfbW9kZWxzIG9iamVjdCBhbmQgYXZlcmFnZSBmcm9tIHRoYXQgc28gdGhhdCB3ZSBjYW4gZ2V0IG1lYW4gZXN0aW1hdGVzIHN1Y2Nlc3NmdWxseSB1c2luZyBwcmVkaWN0KCkKCnRvcF9mZW1hbGVfbW9kZWxzIDwtIGdldC5tb2RlbHMoZmVtYWxlX2RyZWRnZSwgc3Vic2V0ID0gZGVsdGEgPCA2KQoKZmVtYWxlX2F2Z20gPC0gbW9kZWwuYXZnKHRvcF9mZW1hbGVfbW9kZWxzKQoKIyBleHRyYWN0IHVzZWZ1bCBpbmZvCgpGZW1hbGVfQ0lzIDwtIGNvbmZpbnQoZmVtYWxlX2F2Z20pICU+JSBhcy5kYXRhLmZyYW1lKCkKCkZlbWFsZV9lc3RpbWF0ZSA8LSBjb2VmVGFibGUoZmVtYWxlX2F2Z20pICU+JSBhcy5kYXRhLmZyYW1lKCkKCkZlbWFsZV9wX3ZhbHVlcyA8LSBzdW1tYXJ5KGZlbWFsZV9hdmdtKSRjb2VmbWF0LnN1YnNldFssIDVdICU+JSBhcy5kYXRhLmZyYW1lKCkgJT4lIHJlbmFtZShwID0gIi4iKQoKRmVtYWxlX21vZGVsX2F2ZyA8LSBkYXRhLmZyYW1lKEZlbWFsZV9lc3RpbWF0ZSwgRmVtYWxlX0NJcywgRmVtYWxlX3BfdmFsdWVzKSAlPiUgc2VsZWN0KEVzdGltYXRlLCBTdGQuLkVycm9yLCAgWDIuNS4uLCBYOTcuNS4uLCBwKQoKcm93Lm5hbWVzKEZlbWFsZV9tb2RlbF9hdmcpIDwtIGMoIkNvbmRpdGlvbmFsIGludGVyY2VwdCIsICJDb25kaXRpb25hbCBmb2NhbCBoYXBsb3R5cGU6IEJyb3duc3ZpbGxlIiwgIkNvbmRpdGlvbmFsIGZvY2FsIGhhcGxvdHlwZTogRGFob21leSIsICJDb25kaXRpb25hbCBmb2NhbCBoYXBsb3R5cGU6IElzcmFlbCIsICJDb25kaXRpb25hbCBmb2NhbCBoYXBsb3R5cGU6IFN3ZWRlbiIsICJaaSBpbnRlcmNlcHQiLCAiWmkgc29jaWFsIGhhcGxvdHlwZTogQnJvd25zdmlsbGUiLCAiWmkgc29jaWFsIGhhcGxvdHlwZTogRGFob21leSIsICJaaSBzb2NpYWwgaGFwbG90eXBlOiBJc3JhZWwiLCAiWmkgc29jaWFsIGhhcGxvdHlwZTogU3dlZGVuIiwgIlppIGZvY2FsIGhhcGxvdHlwZTogQnJvd25zdmlsbGUiLCAiWmkgZm9jYWwgaGFwbG90eXBlOiBEYWhvbWV5IiwgIlppIGZvY2FsIGhhcGxvdHlwZTogSXNyYWVsIiwgIlppIGZvY2FsIGhhcGxvdHlwZTogU3dlZGVuIikKCgpuYW1lcyhGZW1hbGVfbW9kZWxfYXZnKVtuYW1lcyhGZW1hbGVfbW9kZWxfYXZnKSA9PSAiRXN0aW1hdGUiXSA8LSAiQ29uZGl0aW9uYWwgYXZlcmFnZSBlc3RpbWF0ZSIKbmFtZXMoRmVtYWxlX21vZGVsX2F2ZylbbmFtZXMoRmVtYWxlX21vZGVsX2F2ZykgPT0gIlN0ZC4uRXJyb3IiXSA8LSAiU3RhbmRhcmQgRXJyb3IiCm5hbWVzKEZlbWFsZV9tb2RlbF9hdmcpW25hbWVzKEZlbWFsZV9tb2RlbF9hdmcpID09ICJYMi41Li4iXSA8LSAiMi41JSBJbnRlcnZhbCIKbmFtZXMoRmVtYWxlX21vZGVsX2F2ZylbbmFtZXMoRmVtYWxlX21vZGVsX2F2ZykgPT0gIlg5Ny41Li4iXSA8LSAiOTcuNSUgSW50ZXJ2YWwiCgpGZW1hbGVfbW9kZWxfYXZnICU+JQogIHBhbmRlcihzcGxpdC5jZWxsID0gNDAsIHNwbGl0LnRhYmxlID0gSW5mLCBlbXBoYXNpemUuc3Ryb25nLnJvd3MgPSBjKDIsIDUsIDkpLCByb3VuZCA9IDMpCgpgYGAKCiR+JAoKCiMjIyMgQ29tcGFyaXNvbiBvZiBmb2NhbCBhbmQgc29jaWFsIGhhcGxvdHlwZSBlZmZlY3Qgc2l6ZXMgCgpXaGlsZSBvdXIgZXhwZXJpbWVudCB3YXMgbm90IGRlc2lnbmVkIHRvIGNhbGN1bGF0ZSBlc3RpbWF0ZXMgb2YgY29udmVudGlvbmFsIHNlbGVjdGlvbiBhbmQgc29jaWFsIHNlbGVjdGlvbiwgd2UgcHJlc2VudCB0aGUgc3RhbmRhcmRpc2VkIGVmZmVjdCBzaXplIGZvciB0aGUgZGlmZmVyZW5jZSBpbiBtZWFuIGZpdG5lc3MgYmV0d2VlbiBoYXBsb3R5cGUgcGFpcnMsIGZvciBkaXJlY3QgYW5kIGluZGlyZWN0IGZpdG5lc3MgZWZmZWN0cy4gT3VyIGFpbSBpcyB0byBpbGx1c3RyYXRlIHRoYXQgdGhlIHNpemUgb2YgdGhlIGluZGlyZWN0IGVmZmVjdHMgb24gZmVtYWxlIHJlcHJvZHVjdGl2ZSBvdXRwdXQgYXJlIG9mIHNpbWlsYXIgbWFnbml0dWRlcyB0bywgb3IgZXhjZWVkIHRoZSBzaXplIG9mLCBmb2NhbCBoYXBsb3R5cGUgZWZmZWN0cy4KCiMjIyMjIERpZCB0aGUgZmVtYWxlIHByb2R1Y2Ugb2Zmc3ByaW5nPyAoSHVyZGxlIGNvbXBvbmVudCBvZiB0aGUgbW9kZWwpIHsudGFic2V0fQoKCiMjIyMjIyBGb2NhbCBoYXBsb3R5cGUgZWZmZWN0IHNpemVzCgoKYGBge3J9CiMgRml0IGEgc2ltcGxpZmllZCB2ZXJzaW9uIG9mIHRoZSBtb2RlbCB3aXRob3V0IGludGVyYWN0aW9ucyB0aGF0IGNhbiBiZSB1c2VkIHdpdGggdGhlIGVtbWVhbnMoKSBmdW5jdGlvbi4gRm9yIHRoZSBodXJkbGUgY29tcG9uZW50IG9mIHRoZSBtb2RlbCB3ZSBzaW1wbHkgZml0IGEgYmluYXJ5IG1vZGVsIHdpdGggdGhlIHJlc3BvbnNlIHZhcmlhYmxlOiBkaWQgdGhlIGZlbWFsZSBwcm9kdWNlID49IDEgb2Zmc3ByaW5nLiBUaGlzIHByb2R1Y2VzIHNsaWdodGx5IGRpZmZlcmVudCBlc3RpbWF0ZXMgZnJvbSB0aGUgZnVsbCBodXJkbGUgbW9kZWwgYnV0IHRoZSBlZmZlY3RzIHNpemVzIGFyZSBleHRyZW1lbHkgc2ltaWxhci4KCmZlbWFsZV9yZXByb2R1Y3RpdmVfb3V0cHV0X3ppIDwtIGZlbWFsZV9yZXByb2R1Y3RpdmVfb3V0cHV0ICU+JSAKICBtdXRhdGUocHJvZHVjZWRfb2Zmc3ByaW5nID0gaWZfZWxzZShNYXRlcm5hbF90b3RhbF9vZmZzcHJpbmcgPT0gMCwgMCwgMSkpCgpmZW1hbGVfZW1tZWFuc19oIDwtIGdsbW1UTUIocHJvZHVjZWRfb2Zmc3ByaW5nIH4gU29jaWFsX2hhcGxvdHlwZSArIEZvY2FsX2hhcGxvdHlwZSArICgxfFN0cmFpbikgKyAoMXxCbG9jayksIGRhdGEgPSBmZW1hbGVfcmVwcm9kdWN0aXZlX291dHB1dF96aSwgZmFtaWx5ID0gYmlub21pYWwsIG5hLmFjdGlvbiA9IG5hLmZhaWwsIFJFTUwgPSBGQUxTRSkKCiMgTm93IGNyZWF0ZSB0aGUgcGFpcndpc2UgY29tcGFyaXNvbnMgZm9yIGZvY2FsIGhhcGxvdHlwZQoKcGFpcnMoZW1tZWFucyhmZW1hbGVfZW1tZWFuc19oLCB+IEZvY2FsX2hhcGxvdHlwZSwgdHlwZSA9ICJyZXNwb25zZSIpKSAlPiUgCiAgYXNfdGliYmxlKCkgJT4lIAogIHBhbmRlcihzcGxpdC5jZWxsID0gNDAsIHNwbGl0LnRhYmxlID0gSW5mKQoKYGBgCgojIyMjIyMgU29jaWFsIGhhcGxvdHlwZSBlZmZlY3Qgc2l6ZXMKCmBgYHtyfQojIE5vdyBmb3Igc29jaWFsIGhhcGxvdHlwZQoKcGFpcnMoZW1tZWFucyhmZW1hbGVfZW1tZWFuc19oLCB+IFNvY2lhbF9oYXBsb3R5cGUsIHR5cGUgPSAicmVzcG9uc2UiKSkgJT4lIAogIGFzX3RpYmJsZSgpICU+JSAKICBwYW5kZXIoc3BsaXQuY2VsbCA9IDQwLCBzcGxpdC50YWJsZSA9IEluZikKCmBgYAoKCiMjIyMjIFRoZSBudW1iZXIgb2Ygb2Zmc3ByaW5nIHByb2R1Y2VkIGJ5IGZlcnRpbGUgZmVtYWxlcyAoY29uZGl0aW9uYWwgY29tcG9uZW50IG9mIHRoZSBtb2RlbCkgey50YWJzZXR9CgoKIyMjIyMjIEZvY2FsIGhhcGxvdHlwZSBlZmZlY3Qgc2l6ZXMKCmBgYHtyfQojIEZpdCBhIHNpbXBsaWZpZWQgdmVyc2lvbiBvZiB0aGUgbW9kZWwgd2l0aG91dCBpbnRlcmFjdGlvbnMgdGhhdCBjYW4gYmUgdXNlZCB3aXRoIHRoZSBlbW1lYW5zKCkgZnVuY3Rpb24uIFRoaXMgbW9kZWwgaXMgcmVhc29uYWJsZSBhcyB3ZSBkZXRlY3RlZCBubyBldmlkZW5jZSBmb3IgYW4gaW50ZXJhY3Rpb24gYmV0d2VlbiBhbnkgb2Ygb3VyIGZpeGVkIGVmZmVjdHMgaW4gdGhlIGFib3ZlIGFuYWx5c2lzLgoKZmVtYWxlX2VtbWVhbnMgPC0gZ2xtbVRNQihNYXRlcm5hbF90b3RhbF9vZmZzcHJpbmcgfiBTb2NpYWxfaGFwbG90eXBlICsgRm9jYWxfaGFwbG90eXBlICsgKDF8U3RyYWluKSArICgxfEJsb2NrKSwgZGF0YSA9IGZlbWFsZV9yZXByb2R1Y3RpdmVfb3V0cHV0LCBmYW1pbHkgPSBsaXN0KGZhbWlseT0idHJ1bmNhdGVkX25iaW5vbTEiLGxpbms9ImxvZyIpLCB6aWZvcm11bGEgPSB+LiwgbmEuYWN0aW9uID0gbmEuZmFpbCwgUkVNTCA9IEZBTFNFKQoKIyBOb3cgY3JlYXRlIHRoZSBwYWlyd2lzZSBjb21wYXJpc29ucyBmb3IgZm9jYWwgaGFwbG90eXBlCgpwYWlycyhlbW1lYW5zKGZlbWFsZV9lbW1lYW5zLCB+IEZvY2FsX2hhcGxvdHlwZSwgdHlwZSA9ICJyZXNwb25zZSIpKSAlPiUgCiAgYXNfdGliYmxlKCkgJT4lIAogIHBhbmRlcihzcGxpdC5jZWxsID0gNDAsIHNwbGl0LnRhYmxlID0gSW5mKQoKYGBgCgojIyMjIyMgU29jaWFsIGhhcGxvdHlwZSBlZmZlY3Qgc2l6ZXMKCmBgYHtyfQojIE5vdyBmb3Igc29jaWFsIGhhcGxvdHlwZQoKcGFpcnMoZW1tZWFucyhmZW1hbGVfZW1tZWFucywgfiBTb2NpYWxfaGFwbG90eXBlLCB0eXBlID0gInJlc3BvbnNlIikpICU+JSAKICBhc190aWJibGUoKSAlPiUgCiAgcGFuZGVyKHNwbGl0LmNlbGwgPSA0MCwgc3BsaXQudGFibGUgPSBJbmYpCgpgYGAKCiR+JAoKCiMjIyMgQ3JlYXRlIEZpZ3VyZSAxCgpgYGB7ciBmZW1hbGUgZmlndXJlLCBmaWcud2lkdGg9MTEsIGZpZy5oZWlnaHQ9MTF9CgojIFBsb3R0aW5nIHdpdGggbW9kZWwgcHJlZGljdGlvbnMKCiMgcHJlZGljdC5hdmVyYWdpbmcgZG9lcyBub3QgcmV0dXJuIHByZWRpY3Rpb25zIGZvciB0aGUgY29uZGl0aW9uYWwgZXN0aW1hdGVzIChpLmUuIG1vZGVsIGNvZWZmaWNpZW50cyBhdmVyYWdlZCBvdmVyIG1vZGVscyB0aGF0IGNvbnRhaW4gdGhlIHJlbGV2YW50IHByZWRpY3RvciwgcmF0aGVyIHRoYW4gb3ZlciB0aGUgZnVsbCBzcGVjaWZpZWQgc3Vic2V0KS4gVG8gcHJlZGljdCBtZWFuIGVzdGltYXRlcyBmb3IgZWFjaCBjYXRlZ29yaWNhbCB2YXJpYWJsZSwgSSBjYW4gZ2V0IHRoZXNlIG1vZGVsIGF2ZXJhZ2VkIGVzdGltYXRlcyBieSBtYW51YWxseSBzcGVjaWZ5aW5nIHRoZSBtb2RlbHMgSSB3YW50IHRvIGJlIGF2ZXJhZ2VkLiBUaGVzZSBhcmUgdXNlZCBvbmx5IGZvciBwbG90dGluZy4KCiMgRmlyc3QgYXZlcmFnZSBtb2RlbHMgdGhhdCBjb250YWluIHRoZSBwcmVkaWN0b3IgZm9jYWwgaGFwbG90eXBlIGluIHRoZSBaaSBmb3JtdWxhLiBUaGVzZSB3ZXJlIGZvdW5kIGJ5IGluc3BlY3Rpb24gb2YgdGhlIHRvcCBtb2RlbCBsaXN0IGFib3ZlLgoKZm9jYWxfZmVtYWxlX3ppX21vZGVscyA8LSBnZXQubW9kZWxzKGZlbWFsZV9kcmVkZ2UsIHN1YnNldCA9ICIyNiIpCgojIE5vdGUgdGhhdCBvbmx5IG1vZGVsICIyNicgY29udGFpbnMgZm9jYWwgaGFwbG90eXBlIGluIHRoZSBaaSBmb3JtdWxhLiBObyBhdmVyYWdpbmcgdGFrZXMgcGxhY2UgYW5kIGVzdGltYXRlcyBhcmUgZGVyaXZlZCBzdHJhaWdodCBmcm9tIHRoaXMgbW9kZWwuIFRoZSBjb25kaXRpb25hbCBhdmVyYWdlZCBlc3RpbWF0ZXMgZnJvbSB0aGUgZmVtYWxlX2F2Z20gb2JqZWN0IGFyZSBpZGVudGljYWwgdG8gdGhlIGVzdGltYXRlcyBpbiBtb2RlbCAiMjYiLgoKIyBmaXQgbW9kZWwgIjI2IgoKZm9jYWxfemlfZmVtYWxlX2F2ZyA8LSBnbG1tVE1CKE1hdGVybmFsX3RvdGFsX29mZnNwcmluZyB+IEZvY2FsX2hhcGxvdHlwZSArICgxfFN0cmFpbikgKyAoMXxCbG9jayksIGRhdGEgPSBmZW1hbGVfcmVwcm9kdWN0aXZlX291dHB1dCwgZmFtaWx5ID0gbGlzdChmYW1pbHk9InRydW5jYXRlZF9uYmlub20xIixsaW5rPSJsb2ciKSwgemlmb3JtdWxhID0gfiBGb2NhbF9oYXBsb3R5cGUgKyBTb2NpYWxfaGFwbG90eXBlICsgKDF8U3RyYWluKSArICgxfEJsb2NrKSwgbmEuYWN0aW9uID0gbmEuZmFpbCwgUkVNTCA9IEZBTFNFKQoKCiMgTm93IGF2ZXJhZ2UgbW9kZWxzIHRoYXQgY29udGFpbiB0aGUgc29jaWFsIGhhcGxvdHlwZSBwcmVkaWN0b3IgaW4gdGhlIFppIGZvcm11bGEuCgpzb2NpYWxfZmVtYWxlX3ppX21vZGVscyA8LSBnZXQubW9kZWxzKGZlbWFsZV9kcmVkZ2UsIHN1YnNldCA9IGMoIjE4IiwgIjE3IiwgIjI2IikpCgpzb2NpYWxfemlfZmVtYWxlX2F2ZyA8LSBtb2RlbC5hdmcoc29jaWFsX2ZlbWFsZV96aV9tb2RlbHMpCgojIFRoZSBjb25kaXRpb25hbCBhdmVyYWdlZCBlc3RpbWF0ZXMgZnJvbSB0aGUgZmVtYWxlX2F2Z20gb2JqZWN0IGFyZSBpZGVudGljYWwgdG8gdGhlIHppIHNvY2lhbCBoYXBsb3R5cGUgZXN0aW1hdGVzIGZyb20gdGhlICJmdWxsIG1vZGVsICJzb2NpYWxfemlfZmVtYWxlX2F2ZyIgb2JqZWN0LgoKIyBOb3cgYXZlcmFnZSBtb2RlbHMgdGhhdCBjb250YWluIHRoZSBmb2NhbCBoYXBsb3R5cGUgcHJlZGljdG9yIGluIHRoZSBjb25kaXRpb25hbCBmb3JtdWxhLgoKZm9jYWxfZmVtYWxlX2Nvbl9tb2RlbHMgPC0gZ2V0Lm1vZGVscyhmZW1hbGVfZHJlZGdlLCBzdWJzZXQgPSBjKCIxOCIsICIyIiwgIjI2IikpCgpmb2NhbF9jb25fZmVtYWxlX2F2ZyA8LSBtb2RlbC5hdmcoZm9jYWxfZmVtYWxlX2Nvbl9tb2RlbHMpCgojIEVzdGltYXRlcyBtYXRjaCBmZW1hbGVfYXZnCgojIE1ha2UgYSBuZXcgZGF0YWZyYW1lLCBmb3Igd2hpY2ggd2Ugd2lsbCBkZXJpdmUgcHJlZGljdGlvbnMuIEl0J3MgdGhlIHNhbWUgYXMgdGhlIG9sZCBkYXRhLCBleGNlcHQgdGhhdCB3ZSBzZXQgRm9jYWwgaGFwbG90eXBlLCBibG9jayBhbmQgZHVwbGljYXRlIHRvIHRoZSBzYW1lIHZhbHVlIGZvciBhbGwgb2JzZXJ2YXRpb25zLiBUaGUgcmUuZm9ybSA9IE5BIGFyZ3VtZW50IHNldHMgcmFuZG9tIGVmZmVjdHMgdG8gMCwgbWVhbmluZyBwb3B1bGF0aW9uIG1lYW5zIGFyZSBjYWxjdWxhdGVkLgogCm5ld19kYXRhIDwtIGZlbWFsZV9yZXByb2R1Y3RpdmVfb3V0cHV0ICU+JQogIHVuZ3JvdXAoKSAlPiUKICBzZWxlY3QoRm9jYWxfaGFwbG90eXBlLCBTdHJhaW4sIEJsb2NrKSAlPiUKICBtdXRhdGUoU29jaWFsX2hhcGxvdHlwZSA9ICJCYXJjZWxvbmEiLCBTdHJhaW4gPSAiQmFyY2Vsb25hIDEiLCBCbG9jayA9ICIxIikgJT4lIAogIGRpc3RpbmN0KCkKCiMgRmlyc3QgbGV0cyBnZXQgcHJlZGljdGlvbnMgZm9yIHRoZSBhdmVyYWdlIG51bWJlciBvZiBvZmZzcHJpbmcgcHJvZHVjZWQgYnkgZmVtYWxlcyB0aGF0IHByb2R1Y2VkIGF0IGxlYXN0IG9uZSBwcm9nZW55LCBzcGxpdCBieSBmb2NhbCBoYXBsb3R5cGUuCgpwcmVkIDwtIHByZWRpY3QoZm9jYWxfY29uX2ZlbWFsZV9hdmcsIHNlLmZpdCA9IFRSVUUsIHR5cGUgPSAiY29uZGl0aW9uYWwiLCByZS5mb3JtID0gTkEsIG5ld19kYXRhKSAlPiUKICB1bmxpc3QoKSAlPiUgCiAgYXMuZGF0YS5mcmFtZSgpCgpwcmVkMSA8LSBwcmVkICU+JSAKICBzbGljZSgxOjUpICU+JSAKICByZW5hbWUobWVhbl9lc3RpbWF0ZSA9ICIuIikKCnByZWQyIDwtIHByZWQgJT4lIAogIHNsaWNlKDY6MTApICU+JSAKICByZW5hbWUoU0UgPSAiLiIpCiAgCnByZWQgPC0gY2JpbmQobmV3X2RhdGEsIHByZWQxLCBwcmVkMikgJT4lCiAgbXV0YXRlKFVwcGVyID0gbWVhbl9lc3RpbWF0ZSArIFNFLAogICAgICAgICBMb3dlciA9IG1lYW5fZXN0aW1hdGUgLSBTRSkgJT4lCiAgcmVuYW1lKE1hdGVybmFsX3RvdGFsX29mZnNwcmluZyA9IG1lYW5fZXN0aW1hdGUpCgojIExvYWQgdGhlIGRhdGEgZm9yIGVhY2ggaW5kaXZpZHVhbCBmZW1hbGUgdGhhdCBwcm9kdWNlZCBvZmZzcHJpbmcgc28gdGhhdCB0aGlzIGNhbiBiZSBwbG90dGVkCgpmZW1hbGVfY29uZF9wbG90X2RhdGEgPC0gZmVtYWxlX3JlcHJvZHVjdGl2ZV9vdXRwdXQgJT4lIAogIGZpbHRlcihNYXRlcm5hbF90b3RhbF9vZmZzcHJpbmcgIT0gMCkgJT4lCiAgdW5ncm91cCgpICU+JSAKICBzZWxlY3QoSW5kaXZpZHVhbCwgRm9jYWxfaGFwbG90eXBlLCBNYXRlcm5hbF90b3RhbF9vZmZzcHJpbmcpCgojIE5vdyBsZXRzIHBsb3QgdGhlc2UgcHJlZGljdGlvbnMKCmZlbWFsZV9mb2NhbF9jb25kX3Bsb3QgPC0gZmVtYWxlX2NvbmRfcGxvdF9kYXRhICU+JQogIGdncGxvdChhZXMoeCA9IEZvY2FsX2hhcGxvdHlwZSwgeSA9IE1hdGVybmFsX3RvdGFsX29mZnNwcmluZywgZmlsbCA9IEZvY2FsX2hhcGxvdHlwZSwgY29sb3VyID0gRm9jYWxfaGFwbG90eXBlKSkgKwogIGdlb21fcXVhc2lyYW5kb20oZGF0YSA9IGZlbWFsZV9jb25kX3Bsb3RfZGF0YSwgd2lkdGggPSAwLjMsIHNpemUgPSAyLCBhbHBoYSA9ICAwLjUsIHBjaCA9IDIxLCBjb2xvdXIgPSAnZ3JleTI2JykgKwogIHNjYWxlX2ZpbGxfbWFudWFsKHZhbHVlcyA9IGMoIkJhcmNlbG9uYSIgPSAiI2ZjZGU5YyIsICJCcm93bnN2aWxsZSIgPSAiI2Y1ODY3MCIsICJEYWhvbWV5IiA9ICIjZTM0ZjZmIiwgIklzcmFlbCIgPSAiI2Q3MmQ3YyIgLCAiU3dlZGVuIiA9ICIjN2MxZDZmIikpICsKICBnZW9tX3BvaW50KGRhdGEgPSBwcmVkLCBhZXMoeCA9IEZvY2FsX2hhcGxvdHlwZSwgeSA9IE1hdGVybmFsX3RvdGFsX29mZnNwcmluZyksIHNpemUgPSAzLCBjb2xvdXI9J2JsYWNrJykgKwogIGdlb21fZXJyb3JiYXIoZGF0YSA9IHByZWQsIGFlcyh4ID0gRm9jYWxfaGFwbG90eXBlLCB5bWF4ID0gVXBwZXIsIHltaW4gPSBMb3dlciwgd2lkdGggPSAwKSwgY29sb3VyID0gImJsYWNrIikgKwogIGxhYnMoeCA9ICJGZW1hbGUgbXRETkEgaGFwbG90eXBlIiwgeSA9ICJOdW1iZXIgb2Ygb2Zmc3ByaW5nIHByb2R1Y2VkIGJ5IGZlbWFsZXMiKSArCiAgdGhlbWVfbWluaW1hbCgpICsKICB0aGVtZShsZWdlbmQucG9zaXRpb24gPSAibm9uZSIpICsKICB0aGVtZShwYW5lbC5ncmlkLm1ham9yLnggPSBlbGVtZW50X2JsYW5rKCkpCgojIE5vdyBsZXRzIGdldCB0aGUgWmkgcHJlZGljdGlvbnMgZm9yIGZvY2FsIGhhcGxvdHlwZQoKcHJlZF9aSSA8LSBwcmVkaWN0KGZvY2FsX3ppX2ZlbWFsZV9hdmcsIHNlLmZpdCA9IFRSVUUsIHR5cGUgPSAienByb2IiLCByZS5mb3JtID0gTkEsIG5ld19kYXRhKSAlPiUKICB1bmxpc3QoKSAlPiUgCiAgYXMuZGF0YS5mcmFtZSgpCgpwcmVkX1pJXzEgPC0gcHJlZF9aSSAlPiUgCiAgc2xpY2UoMTo1KSAlPiUgCiAgcmVuYW1lKG1lYW5fZXN0aW1hdGUgPSAiLiIpCgpwcmVkX1pJXzIgPC0gcHJlZF9aSSAlPiUgCiAgc2xpY2UoNjoxMCkgJT4lIAogIHJlbmFtZShTRSA9ICIuIikKCnByZWRfZm9jYWxfWkkgPC0gY2JpbmQobmV3X2RhdGEsIHByZWRfWklfMSwgcHJlZF9aSV8yKSAlPiUKICB0cmFuc211dGUoRm9jYWxfaGFwbG90eXBlLCBTdHJhaW4sIEJsb2NrLCBTb2NpYWxfaGFwbG90eXBlLCBtZWFuX2VzdGltYXRlICA9IDEgLSBtZWFuX2VzdGltYXRlLCBTRSkgJT4lIAogIG11dGF0ZShVcHBlciA9IG1lYW5fZXN0aW1hdGUgKyBTRSwKICAgICAgICAgTG93ZXIgPSBtZWFuX2VzdGltYXRlIC0gU0UpCiAgCgojIFBsb3QKICAKZmVtYWxlX2ZvY2FsX3ppX3Bsb3QgPC0gcHJlZF9mb2NhbF9aSSAlPiUKICBnZ3Bsb3QoYWVzKHggPSBGb2NhbF9oYXBsb3R5cGUsIHkgPSBtZWFuX2VzdGltYXRlLCBmaWxsID0gRm9jYWxfaGFwbG90eXBlLCBjb2xvdXIgPSBGb2NhbF9oYXBsb3R5cGUpKSArCiAgZ2VvbV9lcnJvcmJhcihhZXMoeCA9IEZvY2FsX2hhcGxvdHlwZSwgeW1heCA9IFVwcGVyLCB5bWluID0gTG93ZXIsIHdpZHRoID0gMCksIGNvbG91ciA9ICJibGFjayIpICsKICBnZW9tX3BvaW50KGFlcyh4ID0gRm9jYWxfaGFwbG90eXBlLCB5ID0gbWVhbl9lc3RpbWF0ZSksIHNpemUgPSA0LCBwY2ggPTIxLCBjb2xvdXI9J2dyZXkyNicpICsKICBzY2FsZV9maWxsX21hbnVhbCh2YWx1ZXMgPSBjKCJCYXJjZWxvbmEiID0gIiNmY2RlOWMiLCAiQnJvd25zdmlsbGUiID0gIiNmNTg2NzAiLCAiRGFob21leSIgPSAiI2UzNGY2ZiIsICJJc3JhZWwiID0gIiNkNzJkN2MiICwgIlN3ZWRlbiIgPSAiIzdjMWQ2ZiIpKSArCiAgbGFicyh4ID0gIkZlbWFsZSBtdEROQSBoYXBsb3R5cGUiLCB5ID0gIlByb3BvcnRpb24gb2YgZmVtYWxlcyBwcm9kdWNpbmcgb2Zmc3ByaW5nIikgKwogIHlsaW0oMC40LCAxKSArCiAgdGhlbWVfbWluaW1hbCgpICsKICB0aGVtZShsZWdlbmQucG9zaXRpb24gPSAibm9uZSIpICsKICB0aGVtZShwYW5lbC5ncmlkLm1ham9yLnggPSBlbGVtZW50X2JsYW5rKCkpCgojIE5vdyBjcmVhdGUgdGhlIG5ld2RhdGEgZm9yIHNvY2lhbCBoYXBsb3R5cGUgcHJlZGljdGlvbnMKCm5ld19kYXRhX3NvY2lhbCA8LSBmZW1hbGVfcmVwcm9kdWN0aXZlX291dHB1dCAlPiUKICB1bmdyb3VwKCkgJT4lCiAgc2VsZWN0KFNvY2lhbF9oYXBsb3R5cGUsIFN0cmFpbiwgQmxvY2spICU+JQogIG11dGF0ZShGb2NhbF9oYXBsb3R5cGUgPSAiQmFyY2Vsb25hIiwgU3RyYWluID0gIkJhcmNlbG9uYSAxIiwgQmxvY2sgPSAiMSIpICU+JSAKICBkaXN0aW5jdCgpCgojIEdldCB6aSBzb2NpYWwgaGFwbG90eXBlIHByZWRpY3Rpb25zCgpwcmVkX3NvY2lhbF9aSSA8LSBwcmVkaWN0KHNvY2lhbF96aV9mZW1hbGVfYXZnLCBzZS5maXQgPSBUUlVFLCB0eXBlID0gInpwcm9iIiwgcmUuZm9ybSA9IE5BLCBuZXdfZGF0YV9zb2NpYWwpICU+JQogIHVubGlzdCgpICU+JSAKICBhcy5kYXRhLmZyYW1lKCkKCnByZWRfWklfc29jaWFsXzEgPC0gcHJlZF9zb2NpYWxfWkkgJT4lIAogIHNsaWNlKDE6NSkgJT4lIAogIHJlbmFtZShtZWFuX2VzdGltYXRlID0gIi4iKQoKcHJlZF9aSV9zb2NpYWxfMiA8LSBwcmVkX3NvY2lhbF9aSSAlPiUgCiAgc2xpY2UoNjoxMCkgJT4lIAogIHJlbmFtZShTRSA9ICIuIikKCnByZWRfZm9jYWxfWklfc29jaWFsIDwtIGNiaW5kKG5ld19kYXRhX3NvY2lhbCwgcHJlZF9aSV9zb2NpYWxfMSwgcHJlZF9aSV9zb2NpYWxfMikgJT4lIAogIHRyYW5zbXV0ZShTb2NpYWxfaGFwbG90eXBlLCBTdHJhaW4sIEJsb2NrLCBGb2NhbF9oYXBsb3R5cGUsIG1lYW5fZXN0aW1hdGUgID0gMSAtIG1lYW5fZXN0aW1hdGUsIFNFKSAlPiUgCiAgbXV0YXRlKFVwcGVyID0gbWVhbl9lc3RpbWF0ZSArIFNFLAogICAgICAgICBMb3dlciA9IG1lYW5fZXN0aW1hdGUgLSBTRSkKICAKICAjIFBsb3QgCiAgCmZlbWFsZV9zb2NpYWxfemlfcGxvdCA8LSBwcmVkX2ZvY2FsX1pJX3NvY2lhbCAlPiUKICBnZ3Bsb3QoYWVzKHggPSBTb2NpYWxfaGFwbG90eXBlLCB5ID0gbWVhbl9lc3RpbWF0ZSwgZmlsbCA9IFNvY2lhbF9oYXBsb3R5cGUsIGNvbG91ciA9IFNvY2lhbF9oYXBsb3R5cGUpKSArCiAgZ2VvbV9lcnJvcmJhcihhZXMoeCA9IFNvY2lhbF9oYXBsb3R5cGUsIHltYXggPSBVcHBlciwgeW1pbiA9IExvd2VyLCB3aWR0aCA9IDApLCBjb2xvdXIgPSAiYmxhY2siKSArCiAgZ2VvbV9wb2ludChhZXMoeCA9IFNvY2lhbF9oYXBsb3R5cGUsIHkgPSBtZWFuX2VzdGltYXRlKSwgc2l6ZSA9IDQsIHBjaCA9MjEsIGNvbG91cj0nZ3JleTI2JykgKwogIHNjYWxlX2ZpbGxfbWFudWFsKHZhbHVlcyA9IGMoIkJhcmNlbG9uYSIgPSAiI2ZjZGU5YyIsICJCcm93bnN2aWxsZSIgPSAiI2Y1ODY3MCIsICJEYWhvbWV5IiA9ICIjZTM0ZjZmIiwgIklzcmFlbCIgPSAiI2Q3MmQ3YyIgLCAiU3dlZGVuIiA9ICIjN2MxZDZmIikpICsKICBsYWJzKHggPSAiTWFsZSBtdEROQSBoYXBsb3R5cGUiLCB5ID0gIlByb3BvcnRpb24gb2YgZmVtYWxlcyBwcm9kdWNpbmcgb2Zmc3ByaW5nIikgKwogIHlsaW0oMC40LCAxKSArCiAgdGhlbWVfbWluaW1hbCgpICsKICB0aGVtZShsZWdlbmQucG9zaXRpb24gPSAibm9uZSIpICsKICB0aGVtZShwYW5lbC5ncmlkLm1ham9yLnggPSBlbGVtZW50X2JsYW5rKCkpCgoKIyBMZXRzIGNhbGN1bGF0ZSBtZWFuIGVzdGltYXRlcyBmcm9tIHRoZSByYXcgZGF0YSBmb3IgdGhlIG51bWJlciBvZiBvZmZzcHJpbmcgcHJvZHVjZWQgYnkgZmVtYWxlcyBzcGxpdCBieSBzb2NpYWwgaGFwbG90eXBlLiBXZSBjYW4ndCB1c2UgbW9kZWwgcHJlZGljdGlvbnMgaGVyZSBiZWNhdXNlIHNvY2lhbCBoYXBsb3R5cGUgaXMgbm90IHJldGFpbmVkIGluIHRoZSBjb25kaXRpb25hbCBwYXJ0IG9mIHRoZSBtb2RlbCAKCmZlbWFsZV9yZXByb2R1Y3RpdmVfb3V0cHV0X2NvbmQgPC0gZmVtYWxlX3JlcHJvZHVjdGl2ZV9vdXRwdXQgJT4lIAogIGZpbHRlcihNYXRlcm5hbF90b3RhbF9vZmZzcHJpbmcgIT0gMCkKCmZlbWFsZV9zb2NpYWxfcmF3X2NvbmQgPC0gZmVtYWxlX3JlcHJvZHVjdGl2ZV9vdXRwdXRfY29uZCAlPiUgCiAgZHBseXI6Omdyb3VwX2J5KFNvY2lhbF9oYXBsb3R5cGUpICU+JQogIGRwbHlyOjpzdW1tYXJpc2UoTWVhbl9vZmZzcHJpbmcgPSBzdW0oTWF0ZXJuYWxfdG90YWxfb2Zmc3ByaW5nKSAvIGxlbmd0aChNYXRlcm5hbF90b3RhbF9vZmZzcHJpbmcpLCBMb3dlciA9IChNZWFuX29mZnNwcmluZyAtIFNFKE1hdGVybmFsX3RvdGFsX29mZnNwcmluZykpLCBVcHBlciA9IChNZWFuX29mZnNwcmluZyArIFNFKE1hdGVybmFsX3RvdGFsX29mZnNwcmluZykpLCBuID0gbigpKSAlPiUgCiAgcmVuYW1lKE1hdGVybmFsX3RvdGFsX29mZnNwcmluZyA9IE1lYW5fb2Zmc3ByaW5nKQoKZmVtYWxlX3NvY2lhbF9jb25kX3Bsb3QgPC0gZmVtYWxlX3JlcHJvZHVjdGl2ZV9vdXRwdXRfY29uZCAlPiUKICBnZ3Bsb3QoYWVzKHggPSBTb2NpYWxfaGFwbG90eXBlLCB5ID0gTWF0ZXJuYWxfdG90YWxfb2Zmc3ByaW5nLCBmaWxsID0gU29jaWFsX2hhcGxvdHlwZSwgY29sb3VyID0gU29jaWFsX2hhcGxvdHlwZSkpICsKICBnZW9tX3F1YXNpcmFuZG9tKGRhdGEgPSBmZW1hbGVfcmVwcm9kdWN0aXZlX291dHB1dF9jb25kLCB3aWR0aCA9IDAuMywgc2l6ZSA9IDIsIGFscGhhID0gIDAuNSwgcGNoID0gMjEsIGNvbG91ciA9ICdncmV5MjYnKSArCnNjYWxlX2ZpbGxfbWFudWFsKHZhbHVlcyA9IGMoIkJhcmNlbG9uYSIgPSAiI2ZjZGU5YyIsICJCcm93bnN2aWxsZSIgPSAiI2Y1ODY3MCIsICJEYWhvbWV5IiA9ICIjZTM0ZjZmIiwgIklzcmFlbCIgPSAiI2Q3MmQ3YyIgLCAiU3dlZGVuIiA9ICIjN2MxZDZmIikpICsKZ2VvbV9wb2ludChkYXRhID0gZmVtYWxlX3NvY2lhbF9yYXdfY29uZCwgYWVzKHggPSBTb2NpYWxfaGFwbG90eXBlLCB5ID0gTWF0ZXJuYWxfdG90YWxfb2Zmc3ByaW5nKSwgc2l6ZSA9IDMsIGNvbG91cj0nYmxhY2snKSArCiAgZ2VvbV9lcnJvcmJhcihkYXRhID0gZmVtYWxlX3NvY2lhbF9yYXdfY29uZCwgYWVzKHggPSBTb2NpYWxfaGFwbG90eXBlLCB5bWF4ID0gVXBwZXIsIHltaW4gPSBMb3dlciwgd2lkdGggPSAwKSwgY29sb3VyID0gImJsYWNrIikgKwogIGxhYnMoeCA9ICJNYWxlIG10RE5BIGhhcGxvdHlwZSIsIHkgPSAiTnVtYmVyIG9mIG9mZnNwcmluZyBwcm9kdWNlZCBieSBmZW1hbGVzIikgKwogIHRoZW1lX21pbmltYWwoKSArCiAgdGhlbWUobGVnZW5kLnBvc2l0aW9uID0gIm5vbmUiKSArCiAgdGhlbWUocGFuZWwuZ3JpZC5tYWpvci54ID0gZWxlbWVudF9ibGFuaygpKQoKCmdnYXJyYW5nZShmZW1hbGVfZm9jYWxfemlfcGxvdCwgZmVtYWxlX3NvY2lhbF96aV9wbG90LCBmZW1hbGVfZm9jYWxfY29uZF9wbG90LCBmZW1hbGVfc29jaWFsX2NvbmRfcGxvdCwgbGFiZWxzID0gYygiYSIsICJiIiwgImMiLCAiZCIpKQogIApgYGAKCioqRmlndXJlIDE6KiogbXRETkEgZGlyZWN0bHkgYW5kIGluZGlyZWN0bHkgYWZmZWN0cyBmZW1hbGUgZml0bmVzcy4gUGFuZWxzICoqYSoqIGFuZCAqKmIqKiBzaG93IG1vZGVsIHByZWRpY3Rpb25zIG9mIHRoZSBtZWFuIHByb3BvcnRpb24gb2YgZmVtYWxlcyB0aGF0IHByb2R1Y2VkIG9mZnNwcmluZyAodGhlIHplcm8taW5mbGF0ZWQgb3IgaHVyZGxlIGNvbXBvbmVudCBvZiB0aGUgbW9kZWwpIGFjcm9zcyAqKmEqKiBmZW1hbGUgZm9jYWwgbXRETkEgaGFwbG90eXBlcyBhbmQgKipiKiogc29jaWFsIG1hbGUgbXRETkEgaGFwbG90eXBlcy4gIFBhbmVscyAqKmMqKiBhbmQgKipkKiogc2hvdyB0aGUgZGlyZWN0IGFuZCBpbmRpcmVjdCBlZmZlY3Qgb2YgbXRETkEgb24gdGhlIG51bWJlciBvZiBvZmZzcHJpbmcgcHJvZHVjZWQgYnkgYSBmZW1hbGUuIEJsYWNrIHBvaW50cyBzaG93IG1vZGVsIHByZWRpY3Rpb25zIG9mIHRoZSBtZWFuIGZvciBlYWNoIGhhcGxvdHlwZSBpbiAqKmMqKiBhbmQgbWVhbiBlc3RpbWF0ZXMgZnJvbSB0aGUgcmF3IGRhdGEgaW4gKipkKiosIHdoaWxlIGNvbG91cmVkIHBvaW50cyByZXByZXNlbnQgb2Zmc3ByaW5nIHByb2R1Y2VkIGJ5IGluZGl2aWR1YWwgZmVtYWxlcy4gTW9kZWwgcHJlZGljdGlvbnMgd2VyZSBub3QgY2FsY3VsYXRlZCBmb3IgKipkKiogYmVjYXVzZSBzb2NpYWwgaGFwbG90eXBlIHdhcyBub3QgcmV0YWluZWQgYXMgYSBwcmVkaWN0b3IgZm9yIHRoZSBjb25kaXRpb25hbCBjb21wb25lbnQgb2YgdGhlIGF2ZXJhZ2VkIGh1cmRsZSBtb2RlbC4gRXJyb3IgYmFycyBkZXBpY3Qgc3RhbmRhcmQgZXJyb3JzIGluIGFsbCBwbG90cy4KCgokfiQKCgojIyMgTWFsZSByZXByb2R1Y3RpdmUgZml0bmVzcwoqICogKgoKT3VyIG1lYXN1cmUgb2YgbWFsZSBmaXRuZXNzIGludm9sdmVzIGJvdGggcHJlLSBhbmQgcG9zdC1jb3B1bGF0b3J5IGNvbXBldGl0aXZlIGFiaWxpdHk7IHRoYXQgaXMgd2UgYXNzZXNzIGluIG9uZSBtZWFzdXJlIHRoZSBjb21iaW5hdGlvbiBvZiAxKSB0aGUgYWJpbGl0eSBvZiBhIG1hbGUgdG8gaW5zZW1pbmF0ZSBhIGZlbWFsZSBpbiB0aGUgcHJlc2VuY2Ugb2YgYW5vdGhlciBtYWxlIGFuZCAyKSB0aGUgY29tcGV0aXRpdmUgYWJpbGl0eSBvZiBoaXMgc3Blcm0gd2l0aGluIGZlbWFsZXMgdGhhdCBoYXZlIGJlZW4gaW5zZW1pbmF0ZWQgYnkgYW5vdGhlciBtYWxlLgoKV2UgYW5hbHlzZSBtYWxlIGZpdG5lc3MgYXMgdGhlIHByb3BvcnRpb24gb2Ygb2Zmc3ByaW5nIHByb2R1Y2VkIGJ5IF9tdF8tc3RyYWluIG1hbGVzIGNvbXBldGluZyBhZ2FpbnN0IGEgc3RhbmRhcmQgX2J3XyBtYWxlIGNvbXBldGl0b3IuIFRoZSBkYXRhIGNvbnRhaW5zIG1hbnkgMCBvciAxIHZhbHVlcyAtIGNvcnJlc3BvbmRpbmcgdG8gYSBtb25vcG9seSBvZiBmZW1hbGUgZmVydGlsaXNhdGlvbiBieSBvbmUgb2YgdGhlIG1hbGVzLiBUbyBtb2RlbCB0aGlzIHByb2Nlc3Mgd2Ugc3BlY2lmeSBhIGJldGEtYmlub21pYWwgZGlzdHJpYnV0aW9uLCB3aGljaCBhbGxvd3MgZ3JlYXRlciBmbGV4aWJpbGl0eSB3aGVuIG1vZGVsbGluZyB0aGUgZGlzdHJpYnV0aW9uIG9mIHRoZSByZXNwb25zZS4gCgpUaGUgQnJvd25zdmlsbGUgaGFwbG90eXBlIHJlbmRlcnMgbWFsZXMgc3RlcmlsZSBhbG9uZ3NpZGUgdGhlIF93XjExMTheXyBudWNsZWFyIGJhY2tncm91bmQgYW5kIHN1Yi1mZXJ0aWxlIGFsb25nc2lkZSBhbGwgb3RoZXIgdGVzdGVkIGJhY2tncm91bmRzLiBJbiBvdXIgZXhwZXJpbWVudCwgd2UgZmluZCB0aGF0IEJyb3duc3ZpbGxlIG1hbGVzIGFyZSBhYmxlIHRvIHByb2R1Y2Ugb2Zmc3ByaW5nIGJ1dCB0byBhIHZlcnkgbGltaXRlZCBjYXBhY2l0eS4gRHVlIHRvIHRoaXMsIG91ciBtb2RlbCBpcyB1bmFibGUgdG8gcHJvZHVjZSByZWxpYWJsZSBlc3RpbWF0ZXMgd2hlbiB0aGUgaW50ZXJhY3Rpb24gYmV0d2VlbiBmb2NhbCBhbmQgc29jaWFsIGhhcGxvdHlwZSBpcyBpbmNsdWRlZC4gV2UgZG8gbm90IGluY2x1ZGUgdGhlIGludGVyYWN0aW9uIGluIHRoZSBmdWxsIG1vZGVsLgoKV2UgaW5jbHVkZSBhbiBhZGRpdGlvbmFsIHJhbmRvbSBlZmZlY3QgLSBNQUxFIElEIC0gaW4gdGhlIG1vZGVsIHRvIGFjY291bnQgZm9yIHJlcGVhdGVkIG1lYXN1cmVzIG9mIGVhY2ggcGFpciBvZiBmb2NhbCBhbmQgcml2YWwgbWFsZXMuCgpfKEZvY2FsX21hbGVfb2Zmc3ByaW5nLCBid19vZmZzcHJpbmcpIH4gRm9jYWxfaGFwbG90eXBlICsgU29jaWFsX2hhcGxvdHlwZSArICgxfFN0cmFpbikgKyAoMXxCbG9jaykgKyAoMXxNYWxlX0lEKV8gCgpgYGB7ciBtYWxlIG1vZGVsfQoKcmVzcG9uc2UgPC0gY2JpbmQoTWFsZV9maXRuZXNzJEZvY2FsX21hbGVfb2Zmc3ByaW5nLCBNYWxlX2ZpdG5lc3MkYndfbWFsZV9vZmZzcHJpbmcpCgpNYWxlX2ZpdG5lc3MgPC0gCiAgTWFsZV9maXRuZXNzICU+JSAKICByZW5hbWUoTWFsZV9JRCA9IEluZGl2aWR1YWwpCgptYWxlX21vZGVsIDwtIGdsbW1UTUIocmVzcG9uc2UgfiBGb2NhbF9oYXBsb3R5cGUgKyBTb2NpYWxfaGFwbG90eXBlICsgKDF8QmxvY2spICsgKDF8U3RyYWluKSArICgxfE1hbGVfSUQpLCBkYXRhID0gTWFsZV9maXRuZXNzLCBmYW1pbHkgPSAiYmV0YWJpbm9taWFsIiwgbmEuYWN0aW9uID0gbmEuZmFpbCkKCmBgYAoKIyMjIyBNb2RlbCBldmFsdWF0aW9uCgoKKipUYWJsZSBTOSoqOiBFdmFsdWF0aW9uIG9mIHRoZSBtYWxlIGFkdWx0IGZpdG5lc3MgbW9kZWwuIEFsbCBwb3NzaWJsZSBtb2RlbHMgd2VyZSBldmFsdWF0ZWQgZnJvbSB0aGUgZ2xvYmFsIG1vZGVsIHRoYXQgaW5jbHVkZWQgZm9jYWwgaGFwbG90eXBlLCBzb2NpYWwgaGFwbG90eXBlIGFuZCB0aGUgcmFuZG9tIGZhY3RvcnMgc3RyYWluLCBibG9jayBhbmQgaW5kaXZpZHVhbC4gQXMgdGhlcmUgd2FzIG5vIGNsZWFyIHRvcCBtb2RlbCwgdGhlIGZpbmFsIG1vZGVsIHdhcyBjYWxjdWxhdGVkIHZpYSBtb2RlbCBhdmVyYWdpbmcuCgpgYGB7ciBtYWxlIGRyZWRnZSB0YWJsZX0KCm1hbGVfZHJlZGdlIDwtIGRyZWRnZShtYWxlX21vZGVsKQoKTWFsZV90YWJsZSA8LSBzdWJzZXQobWFsZV9kcmVkZ2UsIGRlbHRhIDwgNikgJT4lIGFzLmRhdGEuZnJhbWUoKQoKCm5hbWVzKE1hbGVfdGFibGUpW25hbWVzKE1hbGVfdGFibGUpID09ICIoSW50ZXJjZXB0KSJdIDwtICJJbnRlcmNlcHQiCm5hbWVzKE1hbGVfdGFibGUpW25hbWVzKE1hbGVfdGFibGUpID09ICJGb2NhbF9oYXBsb3R5cGUiXSA8LSAiRm9jYWwgaGFwbG90eXBlIgpuYW1lcyhNYWxlX3RhYmxlKVtuYW1lcyhNYWxlX3RhYmxlKSA9PSAiU29jaWFsX2hhcGxvdHlwZSJdIDwtICJTb2NpYWwgaGFwbG90eXBlIgpuYW1lcyhNYWxlX3RhYmxlKVtuYW1lcyhNYWxlX3RhYmxlKSA9PSAiRm9jYWxfaGFwbG90eXBlOlNvY2lhbF9oYXBsb3R5cGUiXSA8LSAiRm9jYWwgaGFwbG90eXBlIHggU29jaWFsIGhhcGxvdHlwZSIKbmFtZXMoTWFsZV90YWJsZSlbbmFtZXMoTWFsZV90YWJsZSkgPT0gImRmIl0gPC0gIkRlZ3JlZXMgb2YgZnJlZWRvbSIKbmFtZXMoTWFsZV90YWJsZSlbbmFtZXMoTWFsZV90YWJsZSkgPT0gImxvZ0xpayJdIDwtICJMb2cgbGlrZWxpaG9vZCIKbmFtZXMoTWFsZV90YWJsZSlbbmFtZXMoTWFsZV90YWJsZSkgPT0gIkFJQ2MiXSA8LSAiQUlDYyIKbmFtZXMoTWFsZV90YWJsZSlbbmFtZXMoTWFsZV90YWJsZSkgPT0gImRlbHRhIl0gPC0gIkRlbHRhIgpuYW1lcyhNYWxlX3RhYmxlKVtuYW1lcyhNYWxlX3RhYmxlKSA9PSAid2VpZ2h0Il0gPC0gIldlaWdodCIKCnBhbmRlcihNYWxlX3RhYmxlLCBzcGxpdC5jZWxsID0gNDAsIHNwbGl0LnRhYmxlID0gSW5mKQoKYGBgCgokfiQKCgpSZWxhdGl2ZSB2YXJpYWJsZSBpbXBvcnRhbmNlIGZvciBlYWNoIG9mIHRoZSBwcmVkaWN0b3JzIGFuZCBpbnRlcmFjdGlvbnMgaW4gdGhlIG1hbGUgcmVwcm9kdWN0aXZlIGZpdG5lc3MgbW9kZWwgc2V0LgoKYGBge3IsIG1hbGUgUlZJfQoKIyBwcmVzZW50IHJlbGF0aXZlIHZhcmlhYmxlIGltcG9ydGFuY2UgaW4gYSB0YWJsZSAKCnN3KG1hbGVfZHJlZGdlKSAlPiUKICBhcy5kYXRhLmZyYW1lKCkgJT4lCiAgcGFuZGVyKHNwbGl0LmNlbGwgPSA0MCwgc3BsaXQudGFibGUgPSBJbmYsIHJvdW5kID0gMywgY29sLm5hbWVzID0gIlJWSSIpCmBgYAoKJH4kCgoKCiMjIyMgTW9kZWwgYXZlcmFnaW5nCgpNb2RlbCBjb2VmZmljaWVudHMsIHN0YW5kYXJkIGVycm9yIGFuZCA5NSUgY29uZmlkZW5jZSBsaW1pdHMgbGlzdGVkIGluICoqVGFibGUgMioqIGFyZSBzaG93biBmb3IgdGhlIG1hbGUgYWR1bHQgZml0bmVzcyBhdmVyYWdlZCBtb2RlbC4gQm9sZCByb3dzIGluZGljYXRlIHNpZ25pZmljYW50IGVmZmVjdHMuIAoKYGBge3IgbWFsZSBtb2RlbCBhdmVyYWdpbmd9CgojIE1vZGVsIGF2ZXJhZ2UKCnRvcF9tYWxlX21vZGVscyA8LSBnZXQubW9kZWxzKG1hbGVfZHJlZGdlLCBzdWJzZXQgPSBkZWx0YSA8IDYpCgptYWxlX2F2Z20gPC0gbW9kZWwuYXZnKHRvcF9tYWxlX21vZGVscykKCiMgZXh0cmFjdCB1c2VmdWwgaW5mb3JtYXRpb24KCiMgc3VtbWFyeShtb2RlbC5hdmcobWFsZV9iaW5hcnlfZHJlZGdlLCBzdWJzZXQgPSBkZWx0YSA8IDYpKQoKTWFsZV9DSXMgPC0gY29uZmludChtYWxlX2F2Z20pICU+JSBhcy5kYXRhLmZyYW1lKCkKCk1hbGVfZXN0aW1hdGUgPC0gY29lZlRhYmxlKG1hbGVfYXZnbSkgJT4lIGFzLmRhdGEuZnJhbWUoKQoKTWFsZV9wX3ZhbHVlcyA8LSBzdW1tYXJ5KG1hbGVfYXZnbSkkY29lZm1hdC5zdWJzZXRbLCA1XSAlPiUgYXMuZGF0YS5mcmFtZSgpICU+JSByZW5hbWUocCA9ICIuIikKCk1hbGVfbW9kZWxfYXZnIDwtIGRhdGEuZnJhbWUoTWFsZV9lc3RpbWF0ZSwgTWFsZV9DSXMsIE1hbGVfcF92YWx1ZXMpICU+JSBzZWxlY3QoRXN0aW1hdGUsIFN0ZC4uRXJyb3IsICBYMi41Li4sIFg5Ny41Li4sIHApCgpyb3cubmFtZXMoTWFsZV9tb2RlbF9hdmcpIDwtIGMoIkludGVyY2VwdCIsICJGb2NhbCBoYXBsb3R5cGU6IEJyb3duc3ZpbGxlIiwgIkZvY2FsIGhhcGxvdHlwZTogRGFob21leSIsICJGb2NhbCBoYXBsb3R5cGU6IElzcmFlbCIsICJGb2NhbCBoYXBsb3R5cGU6IFN3ZWRlbiIsICJTb2NpYWwgaGFwbG90eXBlOiBCcm93bnN2aWxsZSIsICJTb2NpYWwgaGFwbG90eXBlOiBEYWhvbWV5IiwgIlNvY2lhbCBoYXBsb3R5cGU6IElzcmFlbCIsICJTb2NpYWwgaGFwbG90eXBlOiBTd2VkZW4iKQoKbmFtZXMoTWFsZV9tb2RlbF9hdmcpW25hbWVzKE1hbGVfbW9kZWxfYXZnKSA9PSAiRXN0aW1hdGUiXSA8LSAiQ29uZGl0aW9uYWwgYXZlcmFnZSBlc3RpbWF0ZSIKbmFtZXMoTWFsZV9tb2RlbF9hdmcpW25hbWVzKE1hbGVfbW9kZWxfYXZnKSA9PSAiU3RkLi5FcnJvciJdIDwtICJTdGFuZGFyZCBFcnJvciIKbmFtZXMoTWFsZV9tb2RlbF9hdmcpW25hbWVzKE1hbGVfbW9kZWxfYXZnKSA9PSAiWDIuNS4uIl0gPC0gIjIuNSUgSW50ZXJ2YWwiCm5hbWVzKE1hbGVfbW9kZWxfYXZnKVtuYW1lcyhNYWxlX21vZGVsX2F2ZykgPT0gIlg5Ny41Li4iXSA8LSAiOTcuNSUgSW50ZXJ2YWwiCgpwYW5kZXIoTWFsZV9tb2RlbF9hdmcsIHNwbGl0LmNlbGwgPSA0MCwgc3BsaXQudGFibGUgPSBJbmYsIGVtcGhhc2l6ZS5zdHJvbmcucm93cyA9IDIsIHJvdW5kID0gMykKCmBgYAoKJH4kCgoKIyMjIyBDb21wYXJpc29uIG9mIGZvY2FsIGFuZCBzb2NpYWwgaGFwbG90eXBlIGVmZmVjdCBzaXplcyB7LnRhYnNldH0KCldoaWxlIG91ciBleHBlcmltZW50IHdhcyBub3QgZGVzaWduZWQgdG8gY2FsY3VsYXRlIGVzdGltYXRlcyBvZiBjb252ZW50aW9uYWwgc2VsZWN0aW9uIGFuZCBzb2NpYWwgc2VsZWN0aW9uLCB3ZSBwcmVzZW50IHRoZSBzdGFuZGFyZGlzZWQgZWZmZWN0IHNpemUgZm9yIHRoZSBkaWZmZXJlbmNlIGluIG1lYW4gZml0bmVzcyBiZXR3ZWVuIGhhcGxvdHlwZSBwYWlycywgZm9yIGRpcmVjdCBhbmQgaW5kaXJlY3QgZml0bmVzcyBlZmZlY3RzLiBPdXIgYWltIGlzIHRvIGlsbHVzdHJhdGUgdGhhdCB0aGUgc2l6ZSBvZiB0aGUgZGlyZWN0IGVmZmVjdHMgb24gbWFsZSByZXByb2R1Y3RpdmUgY29tcGV0aXRpdmUgYWJpbGl0eSBhcmUgbXVjaCBsYXJnZXIgdGhhbiB0aGUgaW5kaXJlY3QgZWZmZWN0cy4KCiMjIyMjIEZvY2FsIGhhcGxvdHlwZSBlZmZlY3Qgc2l6ZXMKCmBgYHtyfQojIFdlIGNhbiB1c2Ugb3VyIG9yaWdpbmFsIG1vZGVsCgojIE5vdyBjcmVhdGUgdGhlIHBhaXJ3aXNlIGNvbXBhcmlzb25zIGZvciBmb2NhbCBoYXBsb3R5cGUKCnBhaXJzKGVtbWVhbnMobWFsZV9tb2RlbCwgfiBGb2NhbF9oYXBsb3R5cGUsIHR5cGUgPSAicmVzcG9uc2UiKSkgJT4lIAogIGFzX3RpYmJsZSgpICU+JSAKICBwYW5kZXIoc3BsaXQuY2VsbCA9IDQwLCBzcGxpdC50YWJsZSA9IEluZikKCmBgYAoKIyMjIyMgU29jaWFsIGhhcGxvdHlwZSBlZmZlY3Qgc2l6ZXMKCmBgYHtyfQojIE5vdyBmb3Igc29jaWFsIGhhcGxvdHlwZQoKcGFpcnMoZW1tZWFucyhtYWxlX21vZGVsLCB+IFNvY2lhbF9oYXBsb3R5cGUsIHR5cGUgPSAicmVzcG9uc2UiKSkgJT4lIAogIGFzX3RpYmJsZSgpICU+JSAKICBwYW5kZXIoc3BsaXQuY2VsbCA9IDQwLCBzcGxpdC50YWJsZSA9IEluZikKCmBgYAoKJH4kCgoKIyMjIyBDcmVhdGUgRmlndXJlIDIKCmBgYHtyIG1hbGUgZmlndXJlLCBmaWcud2lkdGg9IDguNSwgZmlnLmhlaWdodD0gNn0KCiMgcHJlZGljdC5hdmVyYWdpbmcgZG9lcyBub3QgcmV0dXJuIHByZWRpY3Rpb25zIGZvciB0aGUgY29uZGl0aW9uYWwgZXN0aW1hdGVzIChpLmUuIG1vZGVsIGNvZWZmaWNpZW50cyBhdmVyYWdlZCBvdmVyIG1vZGVscyB0aGF0IGNvbnRhaW4gdGhlIHJlbGV2YW50IHByZWRpY3RvciwgcmF0aGVyIHRoYW4gb3ZlciB0aGUgZnVsbCBzcGVjaWZpZWQgc3Vic2V0KS4gVG8gcHJlZGljdCBtZWFuIGVzdGltYXRlcyBmb3IgZWFjaCBjYXRlZ29yaWNhbCB2YXJpYWJsZSwgSSBjYW4gZ2V0IHRoZXNlIG1vZGVsIGF2ZXJhZ2VkIGVzdGltYXRlcyBieSBtYW51YWxseSBzcGVjaWZ5aW5nIHRoZSBtb2RlbHMgSSB3YW50IHRvIGJlIGF2ZXJnYWdlZC4gVGhlc2UgYXJlIHVzZWQgb25seSBmb3IgcGxvdHRpbmcuCgojIEZpcnN0IGF2ZXJhZ2UgbW9kZWxzIHRoYXQgY29udGFpbiB0aGUgcHJlZGljdG9yIGZvY2FsIGhhcGxvdHlwZS4gVGhlc2Ugd2VyZSBmb3VuZCBieSBpbnNwZWN0aW9uIG9mIHRoZSB0b3AgbW9kZWwgbGlzdCBhYm92ZS4KCmZvY2FsX21hbGVfbW9kZWxzIDwtIGdldC5tb2RlbHMobWFsZV9kcmVkZ2UsIHN1YnNldCA9IGMoIjIiLCAiNCIpKQoKZm9jYWxfbWFsZV9hdmcgPC0gbW9kZWwuYXZnKGZvY2FsX21hbGVfbW9kZWxzKQoKIyBOb3RlIHRoYXQgdGhlIGNvbmRpdGlvbmFsIGF2ZXJhZ2VkIGVzdGltYXRlcyBmcm9tIHRoZSBtYWxlX2F2Z20gb2JqZWN0IGFyZSBpZGVudGljYWwgdG8gdGhlIGZ1bGwgYXZlcmFnZWQgZXN0aW1hdGVzIGZvciB0aGUgZm9jYWxfbWFsZV9hdmcgb2JqZWN0IGZvciBmb2NhbCBoYXBsb3R5cGUuCgojIE5vdyBhdmVyYWdlIG1vZGVscyB0aGF0IGNvbnRhaW4gdGhlIHNvY2lhbCBoYXBsb3R5cGUgcHJlZGljdG9yLgoKc29jaWFsX21hbGVfbW9kZWxzIDwtIGdldC5tb2RlbHMobWFsZV9kcmVkZ2UsIHN1YnNldCA9IGMoIjQiKSkKCiMgTm90ZSB0aGF0IHRoZXJlIGlzIG9ubHkgb25lIG1vZGVsICh0aGUgb3JpZ2luYWwgZnVsbCBtb2RlbCkgdGhhdCBjb250YWlucyBzb2NpYWwgaGFwbG90eXBlIGluIHRoZSA8IDYgZGVsdGEgc3Vic2V0LCBzbyBlc3RpbWF0ZXMgYXJlIGNhbGN1bGF0ZWQgZGlyZWN0bHkgZnJvbSB0aGlzIG1vZGVsIC0gbm8gYXZlcmFnaW5nIG9jY3Vycy4gVGhlIGNvbmRpdGlvbmFsIGF2ZXJhZ2VkIGVzdGltYXRlcyBmcm9tIHRoZSBtYWxlX2F2Z20gb2JqZWN0IGFyZSBpZGVudGljYWwgdG8gdGhlIGVzdGltYXRlcyBmcm9tIHRoZSBmdWxsIG1vZGVsLgoKCgojIEZvY2FsIG5ldyBkYXRhCgpuZXdfZGF0YV9tYWxlIDwtIE1hbGVfZml0bmVzcyAlPiUKICB1bmdyb3VwKCkgJT4lCiAgc2VsZWN0KEZvY2FsX2hhcGxvdHlwZSwgQmxvY2ssIFN0cmFpbiwgTWFsZV9JRCkgJT4lCiAgbXV0YXRlKFNvY2lhbF9oYXBsb3R5cGUgPSAiQmFyY2Vsb25hIiwgQmxvY2sgPSAiMSIsIFN0cmFpbiA9ICJCYXJjZWxvbmEgMSIsIE1hbGVfSUQgPSAiNCIpICU+JSAKICBkaXN0aW5jdCgpIAoKCnByZWRfbWFsZV9mb2NhbCA8LSBwcmVkaWN0KGZvY2FsX21hbGVfYXZnLCBuZXdkYXRhID0gbmV3X2RhdGFfbWFsZSwgdHlwZSA9ICJyZXNwb25zZSIsIHNlLmZpdCA9IFRSVUUsIHJlLmZvcm0gPSBOQSkgJT4lCiAgdW5saXN0KCkgJT4lIAogIGFzLmRhdGEuZnJhbWUoKQoKcHJlZF9tYWxlX2ZvY2FsXzEgPC0gcHJlZF9tYWxlX2ZvY2FsICU+JSAKICBzbGljZSgxOjUpICU+JSAKICByZW5hbWUobWVhbl9lc3RpbWF0ZSA9ICIuIikKCnByZWRfbWFsZV9mb2NhbF8yIDwtIHByZWRfbWFsZV9mb2NhbCAlPiUgCiAgc2xpY2UoNjoxMCkgJT4lIAogIHJlbmFtZShTRSA9ICIuIikKICAKcHJlZF9mb2NhbF9tYWxlIDwtIGNiaW5kKG5ld19kYXRhX21hbGUsIHByZWRfbWFsZV9mb2NhbF8xLCBwcmVkX21hbGVfZm9jYWxfMikgJT4lIAogIHJlbmFtZShQcm9wb3J0aW9uX2ZvY2FsID0gbWVhbl9lc3RpbWF0ZSkgJT4lIAogIG11dGF0ZShVcHBlciA9IFByb3BvcnRpb25fZm9jYWwgKyBTRSwKICAgICAgICAgTG93ZXIgPSBQcm9wb3J0aW9uX2ZvY2FsIC0gU0UpCgojIFBsb3QKCk1hbGVfZm9jYWxfcGxvdCA8LSBNYWxlX2ZpdG5lc3MgJT4lCiAgZ2dwbG90KGFlcyh4ID0gRm9jYWxfaGFwbG90eXBlLCB5ID0gUHJvcG9ydGlvbl9mb2NhbCwgZmlsbCA9IEZvY2FsX2hhcGxvdHlwZSwgY29sb3VyID0gRm9jYWxfaGFwbG90eXBlKSkgKwogIGdlb21fcXVhc2lyYW5kb20oZGF0YSA9IE1hbGVfZml0bmVzcywgd2lkdGggPSAwLjMsIGFscGhhID0gIDAuMywgcGNoID0gMjEsIGNvbG91ciA9ICdncmV5MjEnLCBhZXMoc2l6ZSA9IE9mZnNwcmluZ19jb3VudGVkKSkgKwogIHNjYWxlX3NpemVfY29udGludW91cyhyYW5nZSA9IGMoMC41LCA2KSwgbGFiZWxzID0gTlVMTCwgYnJlYWtzID0gYygyMCwgNDAsIDYwLCA4MCwgMTAwLCAxMjApKSArCiAgc2NhbGVfZmlsbF9tYW51YWwodmFsdWVzID0gYygiQmFyY2Vsb25hIiA9ICIjZmNkZTljIiwgIkJyb3duc3ZpbGxlIiA9ICIjZjU4NjcwIiwgIkRhaG9tZXkiID0gIiNlMzRmNmYiLCAiSXNyYWVsIiA9ICIjZDcyZDdjIiAsICJTd2VkZW4iID0gIiM3YzFkNmYiKSkgKwogIGdlb21fcG9pbnQoZGF0YSA9IHByZWRfZm9jYWxfbWFsZSwgYWVzKHggPSBGb2NhbF9oYXBsb3R5cGUsIHkgPSBQcm9wb3J0aW9uX2ZvY2FsKSwgc2l6ZSA9IDMsIGNvbG91cj0nYmxhY2snKSArCiAgZ2VvbV9lcnJvcmJhcihkYXRhID0gcHJlZF9mb2NhbF9tYWxlLCBhZXMoeCA9IEZvY2FsX2hhcGxvdHlwZSwgeW1heCA9IFVwcGVyLCB5bWluID0gTG93ZXIsIHdpZHRoID0gMCksIGNvbG91ciA9ICJibGFjayIpICsKICBsYWJzKHggPSAiTWFsZSBtdEROQSBoYXBsb3R5cGUiLCB5ID0gIlByb3BvcnRpb24gb2Ygb2Zmc3ByaW5nIHNpcmVkIGJ5IGZvY2FsIG1hbGUiKSArCiAgdGhlbWVfbWluaW1hbCgpICsKICB0aGVtZShsZWdlbmQucG9zaXRpb24gPSAibm9uZSIpICsKICB0aGVtZShwYW5lbC5ncmlkLm1ham9yLnggPSBlbGVtZW50X2JsYW5rKCkpCgoKIyBTb2NpYWwgbmV3IGRhdGEKCm5ld19kYXRhX3NvY2lhbF9tYWxlIDwtIE1hbGVfZml0bmVzcyAlPiUKICB1bmdyb3VwKCkgJT4lCiAgc2VsZWN0KFNvY2lhbF9oYXBsb3R5cGUsIEJsb2NrLCBTdHJhaW4sIE1hbGVfSUQpICU+JQogIG11dGF0ZShGb2NhbF9oYXBsb3R5cGUgPSAiQmFyY2Vsb25hIiwgQmxvY2sgPSAiMSIsIFN0cmFpbiA9ICJCYXJjZWxvbmEgMSIsIE1hbGVfSUQgPSAiNCIpICU+JSAKICBkaXN0aW5jdCgpCgojIHByZWRpY3QuYXZlcmFnaW5nIHdvcmtzIG92ZXIgdGhlIGZ1bGwgYXZlcmFnZSByYXRoZXIgdGhhbiB0aGUgY29uZGl0aW9uYWwgYXZlcmFnZSB0aGF0IHdlIHByZXNlbnQuIEkgdXNlIGEgd29ya2Fyb3VuZCB3aGVyZSBJIGNyZWF0ZSBhbm90aGVyIG1vZGVsIGF2ZXJhZ2Ugb2JqZWN0IGJ1dCBvbmx5IHVzaW5nIHRoZSBtb2RlbHMgaW4gdGhlIDwgNiBkZWx0YSBzdWJzZXQgdGhhdCBpbmNsdWRlIHNvY2lhbCBoYXBsb3R5cGUuIEhlcmUgb25seSB0d28gbW9kZWxzIG1ha2UgdGhlIGN1dCAtIHRoZSBmdWxsIG1vZGVsIGlzIHRoZSBvbmx5IG9uZSBjb250YWluaW5nIHNvY2lhbCBoYXBsb3R5cGUgYXMgYSBwcmVkaWN0b3Igc28gbm8gYXZlcmFnaW5nIGlzIG5lY2Nlc3NhcnkuIFBsdWcgdGhlIGZ1bGwgbW9kZWwgaW50byB0aGUgcHJlZGljdCBmdW5jdGlvbi4KCnByZWRfbWFsZV9zb2NpYWwgPC0gcHJlZGljdChtYWxlX21vZGVsLCBuZXdkYXRhID0gbmV3X2RhdGFfc29jaWFsX21hbGUsIHR5cGUgPSAicmVzcG9uc2UiLCBzZS5maXQgPSBUUlVFLCByZS5mb3JtID0gTkEpICU+JQogIHVubGlzdCgpICU+JSAKICBhcy5kYXRhLmZyYW1lKCkKCnByZWRfbWFsZV9zb2NpYWxfMSA8LSBwcmVkX21hbGVfc29jaWFsICU+JSAKICBzbGljZSgxOjUpICU+JSAKICByZW5hbWUobWVhbl9lc3RpbWF0ZSA9ICIuIikKCnByZWRfbWFsZV9zb2NpYWxfMiA8LSBwcmVkX21hbGVfc29jaWFsICU+JSAKICBzbGljZSg2OjEwKSAlPiUgCiAgcmVuYW1lKFNFID0gIi4iKQogIApwcmVkX21hbGVfc29jaWFsIDwtIGNiaW5kKG5ld19kYXRhX3NvY2lhbF9tYWxlLCBwcmVkX21hbGVfc29jaWFsXzEsIHByZWRfbWFsZV9zb2NpYWxfMikgJT4lIAogIHJlbmFtZShQcm9wb3J0aW9uX2ZvY2FsID0gbWVhbl9lc3RpbWF0ZSkgJT4lIAogIG11dGF0ZShVcHBlciA9IFByb3BvcnRpb25fZm9jYWwgKyBTRSwKICAgICAgICAgTG93ZXIgPSBQcm9wb3J0aW9uX2ZvY2FsIC0gU0UpCiAgCgojIFBsb3QKCk1hbGVfc29jaWFsX3Bsb3QgPC0gTWFsZV9maXRuZXNzICU+JQogIGdncGxvdChhZXMoeCA9IFNvY2lhbF9oYXBsb3R5cGUsIHkgPSBQcm9wb3J0aW9uX2ZvY2FsLCBmaWxsID0gU29jaWFsX2hhcGxvdHlwZSwgY29sb3VyID0gU29jaWFsX2hhcGxvdHlwZSkpICsKICBnZW9tX3F1YXNpcmFuZG9tKGRhdGEgPSBNYWxlX2ZpdG5lc3MsIHdpZHRoID0gMC4zLCBhbHBoYSA9ICAwLjMsIHBjaCA9IDIxLCBjb2xvdXIgPSAnZ3JleTIxJywgYWVzKHNpemUgPSBPZmZzcHJpbmdfY291bnRlZCkpICsKICBzY2FsZV9zaXplX2NvbnRpbnVvdXMocmFuZ2UgPSBjKDAuNSwgNiksIGxhYmVscyA9IE5VTEwsIGJyZWFrcyA9IGMoMjAsIDQwLCA2MCwgODAsIDEwMCwgMTIwKSkgKwogc2NhbGVfZmlsbF9tYW51YWwodmFsdWVzID0gYygiQmFyY2Vsb25hIiA9ICIjZmNkZTljIiwgIkJyb3duc3ZpbGxlIiA9ICIjZjU4NjcwIiwgIkRhaG9tZXkiID0gIiNlMzRmNmYiLCAiSXNyYWVsIiA9ICIjZDcyZDdjIiAsICJTd2VkZW4iID0gIiM3YzFkNmYiKSkgKwogIGdlb21fcG9pbnQoZGF0YSA9IHByZWRfbWFsZV9zb2NpYWwsIGFlcyh4ID0gU29jaWFsX2hhcGxvdHlwZSwgeSA9IFByb3BvcnRpb25fZm9jYWwpLCBzaXplID0gMywgY29sb3VyPSdibGFjaycpICsKICBnZW9tX2Vycm9yYmFyKGRhdGEgPSBwcmVkX21hbGVfc29jaWFsLCBhZXMoeCA9IFNvY2lhbF9oYXBsb3R5cGUsIHltYXggPSBVcHBlciwgeW1pbiA9IExvd2VyLCB3aWR0aCA9IDApLCBjb2xvdXIgPSAiYmxhY2siKSArCiAgbGFicyh4ID0gIkZlbWFsZSBtdEROQSBoYXBsb3R5cGUiLCB5ID0gIlByb3BvcnRpb24gb2Ygb2Zmc3ByaW5nIHNpcmVkIGJ5IGZvY2FsIG1hbGUiKSArCiAgdGhlbWVfbWluaW1hbCgpICsKICB0aGVtZShsZWdlbmQucG9zaXRpb24gPSAibm9uZSIpICsKICB0aGVtZShwYW5lbC5ncmlkLm1ham9yLnggPSBlbGVtZW50X2JsYW5rKCkpCgpnZ2FycmFuZ2UoTWFsZV9mb2NhbF9wbG90LCBNYWxlX3NvY2lhbF9wbG90LCBsYWJlbHMgPSBjKCJhIiwgImIiKSkKCmBgYAoKKipGaWd1cmUgMioqOiBUaGUgcHJvcG9ydGlvbiBvZiBvZmZzcHJpbmcgcHJvZHVjZWQgYnkgX210Xy1zdHJhaW4gbWFsZXMgY29tcGV0aW5nIHdpdGggc3RhbmRhcmQgX2J3XyBtYWxlcy4gKiphKiogc2hvd3MgdGhlIGRpcmVjdCBlZmZlY3Qgb2YgbXRETkEgb24gbWFsZSBmaXRuZXNzLiAqKmIqKiBzaG93cyB0aGUgaW5kaXJlY3QgZ2VuZXRpYyBlZmZlY3Qgb2YgZmVtYWxlIG10RE5BIG9uIG1hbGUgZml0bmVzcy4gQ29sb3VyZWQgcG9pbnRzIHJlcHJlc2VudCBpbmRpdmlkdWFsIG1hbGVzLCB3aXRoIGxhcmdlciBwb2ludHMgaW5kaWNhdGluZyBhIGhpZ2hlciBudW1iZXIgb2Ygb2Zmc3ByaW5nIHByb2R1Y2VkIGluIHRoZSB2aWFsIChzaXJlZCBieSBlaXRoZXIgbWFsZSkuIEJsYWNrIHBvaW50cyBzaG93IG1vZGVsIHByZWRpY3Rpb25zIG9mIHRoZSBtZWFuIHByb3BvcnRpb24gb2Ygb2Zmc3ByaW5nIHNpcmVkIGJ5IHRoZSBfbXRfLXN0cmFpbiBtYWxlLCB3aXRoIGFzc29jaWF0ZWQgc3RhbmRhcmQgZXJyb3JzLgoKCiR+JAoKCiMgUmF3IGRhdGEgYW5kIHJlcHJvZHVjaWJpbGl0eQoKIyMjIFRhYmxlIG9mIHJhdyBkYXRhCgpGb3IgdGhlIHB1cnBvc2VzIG9mIGNvbXBsZXRlbmVzcywgdHJhbnNwYXJlbmN5IGFuZCBkYXRhIGFyY2hpdmluZywgd2UgaW5jbHVkZSB0aGUgcmF3IGRhdGEgaW4gdGhpcyByZXBvcnQuCgoKKipUYWJsZSBTMTAqKjogdGhlIHJhdyBkYXRhLXNldCB1c2VkIGluIHRoZSBwcmVzZW50IHN0dWR5LCB3aXRoIE5BIHZhbHVlcyByZXN1bHRpbmcgZnJvbSBkYXRhIGNvbGxlY3Rpb24gbWlzdGFrZXMgcmVtb3ZlZCAoaS5lLiB0d28gZmVtYWxlcyBwbGFjZWQgaW4gY29tcGV0aXRpdmUgZW52aXJvbm1lbnQsIG5vIHZhbHVlIHJlY29yZGVkIGZvciB3aGV0aGVyIHRoZSBmbHkgc3Vydml2ZWQsIGZsaWVzIHRoYXQgZXNjYXBlZCBkdXJpbmcgdGhlIGV4cGVyaW1lbnQgZXRjLikuCmBgYHtyIHJhdyBkYXRhfQprYWJsZShmaXRuZXNzX2RhdGEgJT4lIGZpbHRlcighaXMubmEoU3Vydml2ZWQpKSwgImh0bWwiKSAlPiUKICBrYWJsZV9zdHlsaW5nKCkgJT4lCiAgc2Nyb2xsX2JveCh3aWR0aCA9ICIxMDAlIiwgaGVpZ2h0ID0gIjgwMHB4IikKYGBgCgoKJH4kCgoKQ29sdW1ucyByZXByZXNlbnQ6CgoqKkluZGl2aWR1YWw6KiogdGhlIGZvY2FsIGZseSBiZWluZyB0ZXN0ZWQuCgoqKkJsb2NrOioqIHRoZSBleHBlcmltZW50IHdhcyBjb21wbGV0ZWQgaW4gc2l4IHNlcGFyYXRlIGJsb2NrcywgaWRlbnRpZmllZCBoZXJlIDEtNi4KCioqU3RyYWluOioqIHdoaWNoIG9mIHRoZSAxMCBjb21iaW5hdGlvbnMgb2YgaGFwbG90eXBlIGFuZCBkdXBsaWNhdGUgc3RyYWluIHdhcyB0aGUgaW5kaXZpZHVhbCBmcm9tPwoKKipEeWFkX0lEOioqIHRoaXMgaWRlbnRpZmllcyB0aGUgcGlwZXR0ZSB0aXAgZW52aXJvbm1lbnQgdGhhdCB0aGUgaW5kaXZpZHVhbCBkZXZlbG9wZWQgaW4uCgoqKlNleDoqKiB0aGUgc2V4IG9mIHRoZSBmb2NhbCBpbmRpdmlkdWFsLgoKKipGb2NhbF9oYXBsb3R5cGU6KiogdGhlIG10RE5BIGhhcGxvdHlwZSBjYXJyaWVkIGJ5IHRoZSBmb2NhbCBpbmRpdmlkdWFsLgoKKipTb2NpYWxfaGFwbG90eXBlOioqIHRoZSBtdEROQSBoYXBsb3R5cGUgY2FycmllZCBieSB0aGUgZm9jYWwgaW5kaXZpZHVhbCdzIGNvbXBldGl0b3IuCgoqKlN1cnZpdmVkOioqIGRpZCB0aGUgZm9jYWwgaW5kaXZpZHVhbCBzdXJ2aXZlIHRvIGFkdWx0aG9vZCAoMSkgb3IgZGllIGR1cmluZyBsYXJ2YWwgZGV2ZWxvcG1lbnQgKDApPwoKKipEZXZfdGltZToqKiB0aGUgaG91cnMgdGFrZW4gZm9yIHRoZSBmb2NhbCBpbmRpdmlkdWFsIHRvIHByb2dyZXNzIGZyb20gYW4gZWdnIHRvIGFuIGFkdWx0LiBOQSB2YWx1ZXMgaW5kaWNhdGUgd2hlcmUgaW5kaXZpZHVhbHMgZGlkIG5vdCBzdXJ2aXZlIG9yIGRldmVsb3BtZW50IHRpbWUgY291bGQgbm90IGJlIG1lYXN1cmVkLgoKKipXaW5nX2xlbmd0aDoqKiB0aGUgbGVuZ3RoIGluIG1tIG9mIHRoZSBmb2NhbCBpbmRpdmlkdWFsJ3MgcmlnaHQgd2luZy4KCioqTWF0ZXJuYWxfZmVtYWxlX29mZnNwcmluZzoqKiB0aGUgbnVtYmVyIG9mIGFkdWx0IGZlbWFsZSBvZmZzcHJpbmcgdGhlIGZvY2FsIF9tdF8tc3RyYWluIGZlbWFsZSBwcm9kdWNlZCBvdmVyIGEgdHdvIGRheSBwZXJpb2QuCgoqKk1hdGVybmFsX21hbGVfb2Zmc3ByaW5nOioqIHRoZSBudW1iZXIgb2YgYWR1bHQgbWFsZSBvZmZzcHJpbmcgdGhlIGZvY2FsIF9tdF8tc3RyYWluIGZlbWFsZSBwcm9kdWNlZCBvdmVyIGEgdHdvIGRheSBwZXJpb2QuCgoqKk1hdGVybmFsX3RvdGFsX29mZnNwcmluZzoqKiB0aGUgdG90YWwgbnVtYmVyIG9mIGFkdWx0IG9mZnNwcmluZyB0aGUgZm9jYWwgX210Xy1zdHJhaW4gZmVtYWxlIHByb2R1Y2VkIG92ZXIgYSB0d28gZGF5IHBlcmlvZC4KCioqUGF0ZXJuYWxfZm9jYWxfb2Zmc3ByaW5nOioqIHRoZSBudW1iZXIgb2YgcmVkLWV5ZSBwaGVub3R5cGUgb2Zmc3ByaW5nIHNpcmVkIGJ5IGEgX210Xy1zdHJhaW4gbWFsZSBpbiB0aGUgYWR1bHQgbWFsZSBmaXRuZXNzIGFzc2F5LgoKKipQYXRlcm5hbF9id19vZmZzcHJpbmc6KiogdGhlIG51bWJlciBvZiBicm93bi1leWUgcGhlbm90eXBlIG9mZnNwcmluZyBzaXJlZCBieSBhIF9id18gY29tcGV0aXRvciBtYWxlIGluIHRoZSBhZHVsdCBtYWxlIGZpdG5lc3MgYXNzYXkuCgoqKlByb3BvcnRpb24gZm9jYWw6KiogdGhlIHByb3BvcnRpb24gb2Ygb2Zmc3ByaW5nIHByb2R1Y2VkIGJ5IHRoZSBfbXRfLXN0cmFpbiBtYWxlIGluIHRoZSBhZHVsdCBtYWxlIGZpdG5lc3MgYXNzYXkuCgoKIyMjIFIgc2Vzc2lvbiBpbmZvcm1hdGlvbgoKVGhpcyBzZWN0aW9uIHByb3ZpZGVzIGluZm9ybWF0aW9uIG9uIHRoZSBvcGVyYXRpbmcgc3lzdGVtIGFuZCBSIHBhY2thZ2VzIGF0dGFjaGVkIGR1cmluZyB0aGUgcHJvZHVjdGlvbiBvZiB0aGlzIGRvY3VtZW50LCB0byBhbGxvdyBlYXNpZXIgcmVwbGljYXRpb24gb2YgdGhlIGFuYWx5c2lzLgoKYGBge3Igc2Vzc2lvbiBpbmZvfQpzZXNzaW9uSW5mbygpICU+JSBwYW5kZXIKYGBgCgoKIyBSZWZlcmVuY2VzCg==