Load R packages and data

# All but 1 of these packages can be easily installed from CRAN.
# However it was harder to install the showtext package. On Mac, I did this:
# installed 'homebrew' using Terminal: ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)" 
# installed 'libpng' using Terminal: brew install libpng
# installed 'showtext' in R using: devtools::install_github("yixuan/showtext")  

library(gridExtra)
library(dplyr) # needed for the '%>%' operator, and for useful functions for re-shaping the data
library(brms) # 'Bayesian regression models'
library(stringr) # for manipulating character strings
library(reshape2) # for 1 handy function: melt()
library(ggplot2) # Nice plots
library(ggridges) # 'Joy Division' plots
library(RColorBrewer) # nice colours
library(viridis) # nice colours
library(pander) # For nice table
library(knitr) # For HTML document options
library(showtext) # For fancy Google font in figures
library(purrr) # For neater operations on lists
library(tidyr) # change between long and wide data formats
library(kableExtra) # for scrolling tables
library(mice) # for imputing missing data
library(ggbeeswarm) # for bee swarm plots
library(bayestestR) # for Bayesian p-value equivalent (p_direction function)
library(tidybayes) # for "eye plots"
library(tibble) # for rownames_to_column function
options(mc.cores = 4)
panderOptions('round', 2)
panderOptions('keep.trailing.zeros', TRUE)

# Install a nice font from Google Fonts
font_add_google(name = "Lato", family = "Lato", regular.wt = 400, bold.wt = 700)
showtext_auto()

# Load and clean the raw data
load_data <- function(filepath){
  data <- read.csv(filepath, stringsAsFactors = FALSE)
  data$Vial <- factor(data$Vial, levels = 1:4)
  data$Order.of.exposure <- "Second"
  for(i in 1:max(data$Female)) {
    if(data$Male.exposure[data$Female == i][1] == "H") data$Order.of.exposure[data$Female == i] <- "First"
  }
  data$Male.exposure[data$Male.exposure == "H"] <- "High"
  data$Male.exposure[data$Male.exposure == "L"] <- "Low"
  data$Male.exposure <- relevel(factor(data$Male.exposure), ref = "Low") # Make high male contact the reference
  data$Mortality <- as.numeric(as.factor(data$Mortality)) - 1 # Females who survived scored as 0, those that died scored as 1
  data
}  

experiment1 <- load_data("data/experiment_1_male_effects.csv")
experiment2 <- load_data("data/experiment_2_female_effects.csv")

# Load up the cleaned data showing the survival of females in Expts 1 and 2
get_survival_data <- function(dataset){
  
  dead.ones <- dataset %>%
    filter(Mortality == 1) %>%
    split(.$Female) %>%
    map(~ .x[1,]) %>% bind_rows() %>% 
    select(Block, Female, Haplotype, Male.exposure, Vial, Order.of.exposure) %>%
    mutate(censored = 0)
  
  survivors <- dataset %>%
    filter(Mortality == 0) %>%
    split(.$Female) %>%
    map(function(x) x[nrow(x),]) %>% bind_rows() %>% 
    select(Block, Female, Haplotype, Male.exposure, Vial, Order.of.exposure) %>%
    mutate(censored = 1)
  
  rbind(dead.ones, survivors)
}

survival_data_expt1 <- get_survival_data(experiment1)
survival_data_expt2 <- get_survival_data(experiment2)

Modelling approach

We analysed the data using Bayesian generalised linear mixed models in the brms package for R.

Distribution of the response variable

Since our response variable (number of progeny produced) is count data, and is somewhat over-dispersed and countains zeros for vials in which the female had died, we specified a zero-inflated negative binomial error distribution. This is similar to a zero-inflated Poisson distibution, but is more flexible because the mean and variance are not constrained to be the same. We verified that the models fit eh data well using posterior predictive checks (see below).

Group-level effects (aka random effects)

We modelled group-specific means for ‘Block’ and (where relevant) ‘Female’ as ‘random intercepts’. The ‘Block’ effect accounts for differences in the response variable between experimental blocks (e.g. to variance in temperature or composition of the fly food). The ‘Female’ effect models variation in progeny number between different females, and prevents the model from incurring pseudoreplication due to the fact that we recorded multiple (typically 4) observations per female. The female-level random effect is not needed in the multivariate model of Experiment 1 (since there is only 1 observation of each female’s set of 4 vials).

Population-level effects (aka fixed effects)

Because the present study is a planned experiment focusing on the effect of mtDNA haplotype, we selected a single model that allows us to test the main effects and interaction effects that were a priori of interest. The model of Experiment 2 contained the following three fixed effects, and all the possible 2- and 3-way interactions:

Haplotype: The mtDNA haplotype of the males (in experiment 1) or females (experiment 2).

Age category (also called ‘vial’): Is the focal observation from the 1st, 2nd, 3rd, or 4th vial in which the female lived? This is a proxy for the age category of the flies (1: youngest, 4: oldest). Treated as a discrete variable, since there was a clearly non-linear relationship with fecundity.

Order of exposure: Was this female allocated to the high male exposure treatment (coded as “First”) or the low exposure treatment (“Second”) in her first vial?

The Age category effect was not fitted in the model of experiment 1 (see below).

Model 1 vs Model 2 differences

The model of Experiment 1 is a multivariate model, with the data from each female’s 4 vials as a 4-component response. This was done (over the more conventional method used for Experiment 2) because it makes it easier to set a prior on Vial 1 specifically, which we wanted to do because the haplotype treatment should have no effect on females that have not yet met any males from the mitochondrial strains. The model of Experiment 2 is a univariate model, with vial treated as a fixed factor, and vials from the same female being grouped by the ‘Female ID’ random effect.

Priors

We used the standard priors of the the brms package with one exception (see below), namely student_t(3, 3, 10) for the intercept, student_t(3, 0, 10) for the random effects, and gamma(0.01, 0.01) for the shape parameter of the negative binomial distribution. These priors are regarded as weakly informative.

For experiment 1, we have a strong prior belief that there can be no causal effect of male mitochondrial DNA until after a female has actually encountered our mitoline males. We thus used a prior specification that forced the effect of Haplotype to be zero among females that had not yet encountered the mitoline males, i.e. females in the “Order of exposure = Second” treatment who were in their first vial.

Analysing the models

To test for significant differences between treatment groups (contingent on the effects of the other fixed and random factors), we computed the posterior mean estimates for each group, using the fitted() function. We also calculated the posterior differences between pairs of means, which can be used for hypothesis testing (we interpret differences with 95% credible intervals that exclude zero as evidence for a non-zero effect, with bigger differences from zero representing stronger evidence).

Code to run the model of Experiment 1 or 2

# Helper function get the Bayesian R^2 + 95% CIs for a brms model, and neaten them for printing
neat.R2 <- function(model){
  R2 <- bayes_R2(model) %>% round(2)
  paste(R2[1,1], " (95% CIs = ", R2[1,3], "-", R2[1,4], ")", sep = "")
}


run_model <- function(fixed_effects, experiment){
  
  if(experiment == 1) dataset <- experiment1
  else dataset <- experiment2
  
  # Set up the data for a multivariate model
  my_data <- dataset %>% 
    filter(!is.na(Total.offspring)) %>%
    select(Vial, Total.offspring, Haplotype, Order.of.exposure, Female, Block) %>%
    mutate(Order.of.exposure = relevel(factor(Order.of.exposure), ref = "Second")) %>%
    spread(Vial, Total.offspring) %>%
    rename_at(5:8, ~ paste("Vial_", .x, sep = ""))
  
  # Create 10 imputed datasets with the escaped/missed females' fecundities filled in
  # NB in Block 4, an accident meant that we could not count the fecundity for vial 4
  # Imputing the data means that we do not have to discard all the data from vials 1-3
  imputed_data <- mice(my_data, m = 10, print = FALSE) 
  
  my_formula <- as.formula(paste("mvbind(Vial_1, Vial_2, Vial_3, Vial_4) ~", fixed_effects, "(1|p|Block)"))
  
  # for experiment 1, provide a strong prior that mito haplotype has zero effect on females that 
  # have so far never been exposed to any mitoline males. All other priors are left weak
  if(any(str_detect(as.character(my_formula), "Haplotype")) & experiment == 1){

    prior <- c(prior(normal(0, 0.001), resp = "Vial1", coef = "HaplotypeBrownsville"),
               prior(normal(0, 0.001), resp = "Vial1", coef = "HaplotypeDahomey"),
               prior(normal(0, 0.001), resp = "Vial1", coef = "HaplotypeIsrael"),
               prior(normal(0, 0.001), resp = "Vial1", coef = "HaplotypeSweden"))
    
    model <- brm_multiple(
      my_formula, 
      data = imputed_data, 
      family = "zero_inflated_negbinomial",
      save_all_pars = TRUE,
      cores = 4, chains = 4, iter = 10000, init = 0, seed = 1, # many iterations, for accurate bridge sampling (see ?post_prob). 10 * 10,000 = 100,000
      control = list(adapt_delta = 0.9999, max_treedepth = 15), 
      prior = prior) 
  
  # if Haplotype is not in the model, or it is Experiment 2 data, just use the default priors
  } else {
    model <- brm_multiple(
      my_formula, 
      data = imputed_data, 
      family = "zero_inflated_negbinomial",
      save_all_pars = TRUE,
      cores = 4, chains = 4, iter = 10000, init = 0, seed = 1, 
      control = list(adapt_delta = 0.9999, max_treedepth = 15)) 
  }
  
  R2 <- neat.R2(model) 
  
  # Define new data for prediction
  new <- my_data %>% 
    select(Haplotype, Order.of.exposure) %>% 
    distinct() %>% mutate(Var1 = 1:10)
  
  # Get predicted means
  predictions <- left_join(
    melt(fitted(model, newdata = new, re_formula = NA)) %>% 
      spread(Var2, value), new, by = "Var1") %>% 
    rename(Vial = Var3, `Order of exposure` = Order.of.exposure) %>%
    mutate(`Male exposure` = 
             ifelse((Vial %in% c("Vial1", "Vial3") & `Order of exposure` == "First") |
                      (Vial %in% c("Vial2", "Vial4") & `Order of exposure` == "Second"), 
                    "Yes", "No"),
           Vial = str_replace_all(as.character(Vial), "Vial", ""))
  
  # Get the posterior predicted value of each vial, treatment and haplotype combination
  posterior_by_vial <- melt(fitted(model, 
                                   newdata = new, 
                                   re_formula = NA,
                                   summary = FALSE)) %>%
    left_join(new, by = c("Var2" = "Var1")) %>% 
    select(-Var2) %>% rename(sample = Var1, Vial = Var3) %>% as_tibble()
  
  # Return the model and the other useful objects
  list(model = model, 
       R2 = R2, 
       means = predictions,
       posterior_by_vial = posterior_by_vial)
}

Code to calculate posterior estimates of group means and differences between these means

make_difference_tables <- function(posterior_by_vial){
  
  posterior_by_vial <- posterior_by_vial %>% 
    select(sample, Vial, value, Haplotype, Order.of.exposure)
  
  posterior_group_means <- posterior_by_vial %>% 
    group_by(Vial, Order.of.exposure, Haplotype) %>%
    summarise(summ = list(posterior_summary(value))) %>%
    ungroup() %>% rowwise() %>%
    mutate(Estimate = summ[,1], Est.Error = summ[,2],
           Q2.5 = summ[,3], Q97.5 = summ[,4]) %>% 
    select(-summ) 
  
  mean_total_progeny <- posterior_by_vial %>% 
    select(-Vial) %>%
    group_by(Haplotype, Order.of.exposure, sample) %>% 
    summarise_all(list(~sum)) %>%    # Add up the progeny counts from each vial/age class
    ungroup() %>%
    group_by(Haplotype, Order.of.exposure) %>% 
    summarise(summ = list(posterior_summary(value))) %>%
    ungroup() %>% rowwise() %>%
    mutate(Estimate = summ[,1], Est.Error = summ[,2],
           Q2.5 = summ[,3], Q97.5 = summ[,4],
           Vial = "Total across all 4 vials") %>% select(-summ)
  
  group_means <- rbind(
    posterior_group_means %>% select(Haplotype, Order.of.exposure, Vial, everything()),
    mean_total_progeny    %>% select(Haplotype, Order.of.exposure, Vial, everything())) %>% 
    mutate(Order.of.exposure = as.character(Order.of.exposure),
           males = "No",
           Vial = gsub("Vial", "", as.character(Vial)),
           males = replace(males, Vial %in% c(1, 3) & Order.of.exposure == "First", "Yes"),
           males = replace(males, Vial %in% c(2, 4) & Order.of.exposure == "Second", "Yes"),
           Order.of.exposure = replace(Order.of.exposure, Order.of.exposure == "First", "Males in vials 1 and 3"),
           Order.of.exposure = replace(Order.of.exposure, Order.of.exposure == "Second", "Males in vials 2 and 4")) %>%
    rename(`Order of exposure` = Order.of.exposure,
           `Males in the vial` = males) 
    
  
  new <- experiment1 %>% 
    select(Haplotype, Order.of.exposure) %>% 
    distinct() 
  
  combos <- apply(t(combn(unique(new$Haplotype), 2)), 1, paste0, collapse = "_")
  
  post_summary <- function(posterior, col_name){
    x <- posterior_summary(posterior) %>% round(2) %>% as.data.frame()
    x <- tibble(Estimate = paste(x[,1], " (", x[,3], " to ", x[,4], ")", sep = ""),
                SE = x[,2],
                Significant = ifelse(sign(x[,3]) == sign(x[,4]), "*", " ")) 
    names(x)[1] <- col_name
    x
  }
  
  # Find differences between haplotypes in total fecundity, separately for each Order.of.exposure treatment
  haplotype_effect_total <- posterior_by_vial %>%
    split(paste(.$Haplotype, .$Order.of.exposure)) %>% # Split by combination
    cross2(.,.) %>%  # Pair up everything with everything (inefficent but easier coding)
    map(function(x){
      
      haplo1 <- group_by(x[[1]], sample) %>% # sum across the 4 vials
        summarise(Total.fecundity = sum(value))
      haplo2 <- group_by(x[[2]], sample) %>%
        summarise(Total.fecundity = sum(value))
      
      data.frame(para1 = x[[1]][1, c(4,5)], # Find which parameter space pair we are looking at
                 para2 = x[[2]][1, c(4,5)], # Find posterior difference in total fecundity, and summarise it
                 post_summary(haplo1$Total.fecundity - haplo2$Total.fecundity, "diff"),
                 post_summary(abs(haplo1$Total.fecundity - haplo2$Total.fecundity) / haplo1$Total.fecundity, "rel") %>% select(-Significant, -SE)) 
    }) %>% do.call("rbind", .) %>% 
    filter(para1.Order.of.exposure == para2.Order.of.exposure,
           paste(para1.Haplotype, para2.Haplotype, sep = "_") %in% combos) %>%
    rename(`Haplotype 1` = para1.Haplotype, `Haplotype 2` = para2.Haplotype) %>%
    mutate(`Order of exposure` = para1.Order.of.exposure,
           Vial = "Total across all 4 vials") %>%
    select(Vial, `Order of exposure`, `Haplotype 1`, `Haplotype 2`, 
           diff, SE, rel, Significant) %>%
    arrange(desc(`Order of exposure`), `Haplotype 1`, `Haplotype 2`) 
  
  
  # Find differences between haplotypes for all combinations of time point and Order.of.exposure treatment
  # Basically this examines all possible 2-way interaction terms for haplotype and Order.of.exposure, separately at each time point
  haplotype_effect_by_vial <- posterior_by_vial %>%
    split(paste(.$Haplotype, .$Order.of.exposure, .$Vial)) %>% # Split by combination
    cross2(.,.) %>%  # Pair up everything with everything (inefficent but easier coding)
    map(function(x){
      data.frame(para1 = x[[1]][1, c(2,4,5)], # Find which parameter space pair we are looking at
                 para2 = x[[2]][1, c(2,4,5)], # then compute the difference in fecundity: subtract posterior2 from posterior1, and summarise it (find median and CIs)
                 post_summary(x[[1]]$value - x[[2]]$value, "diff"),
                 post_summary(abs(x[[1]]$value - x[[2]]$value) / x[[1]]$value, "rel") %>% select(-Significant, -SE)) 
    }) %>% do.call("rbind", .) %>%
    filter(para1.Vial == para2.Vial,
           para1.Order.of.exposure == para2.Order.of.exposure,
           paste(para1.Haplotype, para2.Haplotype, sep = "_") %in% combos) %>%
    rename(`Haplotype 1` = para1.Haplotype, `Haplotype 2` = para2.Haplotype) %>%
    mutate(Vial = str_replace_all(para1.Vial, "Vial", "Vial "), 
           `Order of exposure` = para1.Order.of.exposure) %>%
    select(Vial, `Order of exposure`, `Haplotype 1`, `Haplotype 2`, 
           diff, SE, rel, Significant) %>%
    arrange(Vial, desc(`Order of exposure`), `Haplotype 1`, `Haplotype 2`)
  
  joint_haplotype_table <- bind_rows(haplotype_effect_total, 
                                     haplotype_effect_by_vial) %>%
    arrange(Vial) %>% rename(`Difference in fecundity` = diff,
                             `Relative difference` = rel) %>% as_tibble()
  
  
  # Find difference between halpos of the 'order of exposure' treatment
  haplotype_exposure_effect_total <- posterior_by_vial %>%
    split(paste(.$Haplotype)) %>%
    cross2(.,.) %>%
    map(function(x){
      
      summed_1 <- x[[1]] %>% group_by(sample, Order.of.exposure) %>%
        summarise(value = sum(value)) # sum across all 4 vials
      summed_2 <- x[[2]] %>% group_by(sample, Order.of.exposure) %>%
        summarise(value = sum(value)) 
      
      effect.of.being.exposed.first1 <- summed_1$value[summed_1$Order.of.exposure == "First"] - 
        summed_1$value[summed_1$Order.of.exposure == "Second"]
      effect.of.being.exposed.first2 <- summed_2$value[summed_2$Order.of.exposure == "First"] - 
        summed_2$value[summed_2$Order.of.exposure == "Second"]
      
      data.frame(para1 = x[[1]][, c(2,4)],
                 para2 = x[[2]][, c(2,4)],
                 post_summary(effect.of.being.exposed.first1 - effect.of.being.exposed.first2, "diff"),
                 post_summary(abs(effect.of.being.exposed.first1 - effect.of.being.exposed.first2) / effect.of.being.exposed.first1, "rel") %>% select(-Significant, -SE),
                 stringsAsFactors = FALSE)
    }) %>% bind_rows() %>%
    filter(paste(para1.Haplotype, para2.Haplotype, sep = "_") %in% combos) %>%
    rename(`Haplotype 1` = para1.Haplotype, `Haplotype 2` = para2.Haplotype) %>%
    mutate(Vial = "Total across all 4 vials") %>%
    select(Vial, `Haplotype 1`, `Haplotype 2`, 
           diff, SE, rel, Significant) %>%
    arrange(`Haplotype 1`, `Haplotype 2`) %>% distinct()
  
  
  haplotype_exposure_effect_by_vial <- posterior_by_vial %>%
    split(paste(.$Haplotype, .$Vial)) %>%
    cross2(.,.) %>%
    map(function(x){
      
      effect.of.being.exposed.first1 <- x[[1]]$value[x[[1]]$Order.of.exposure == "First"] - 
        x[[1]]$value[x[[1]]$Order.of.exposure == "Second"]
      effect.of.being.exposed.first2 <- x[[2]]$value[x[[2]]$Order.of.exposure == "First"] - 
        x[[2]]$value[x[[2]]$Order.of.exposure == "Second"]
      
      data.frame(para1 = x[[1]][, c(2,4)],
                 para2 = x[[2]][, c(2,4)],
                 post_summary(effect.of.being.exposed.first1 - effect.of.being.exposed.first2, "diff"),
                 post_summary(abs(effect.of.being.exposed.first1 - effect.of.being.exposed.first2) / effect.of.being.exposed.first1, "rel") %>% select(-Significant, -SE),
                 stringsAsFactors = FALSE)
    }) %>% bind_rows() %>%
    filter(para1.Vial == para2.Vial,
           paste(para1.Haplotype, para2.Haplotype, sep = "_") %in% combos) %>%
    rename(`Haplotype 1` = para1.Haplotype, `Haplotype 2` = para2.Haplotype) %>%
    mutate(Vial = str_replace_all(para1.Vial, "Vial", "Vial ")) %>%
    select(Vial, `Haplotype 1`, `Haplotype 2`, 
           diff, SE, rel, Significant) %>%
    arrange(Vial, `Haplotype 1`, `Haplotype 2`) %>% distinct()
  
  joint_haplotype_exposure_table <- bind_rows(haplotype_exposure_effect_total, 
                                              haplotype_exposure_effect_by_vial) %>%
    arrange(Vial) %>% rename(`Difference in effect of exposure order` = diff,
                             `Relative difference` = rel) %>% as_tibble()
  
  # Range in fecundity across vials per haplotype (across both treatments)
  range_in_fecundity <- posterior_by_vial %>% 
    group_by(sample, Haplotype) %>%
    summarise(range = max(value) - min(value)) %>% ungroup() 
  
  differences_in_range_in_fecundity <- range_in_fecundity %>%
    split(.$Haplotype) %>%
    cross2(.,.) %>%
    map(function(x){
      
      data.frame(Haplotype_1 = x[[1]]$Haplotype,
                 Haplotype_2 = x[[2]]$Haplotype,
                 post_summary(x[[1]]$range - x[[2]]$range, "diff"))
    }) %>% do.call("rbind", .) %>%
    filter(paste(Haplotype_1, Haplotype_2, sep = "_") %in% combos) %>%
    rename(`Haplotype 1` = Haplotype_1, `Haplotype 2` = Haplotype_2) %>%
    select(`Haplotype 1`, `Haplotype 2`, 
           diff, SE, Significant) %>%
    arrange(`Haplotype 1`, `Haplotype 2`) %>% distinct() %>%
    rename(`Difference in range of fecundity across vials` = diff)
  
  return(list(posterior_treatment_means = group_means, 
              differences_between_haplos = joint_haplotype_table,
              haplo_by_exposure_effects = joint_haplotype_exposure_table,
              differences_in_range_in_fecundity = differences_in_range_in_fecundity))
}

# Helper for adding stars to the rows where the 95% CIs don't overlap zero
add_significance_stars <- function(posterior_summary){
  posterior_summary$xx <- " "
  posterior_summary$xx[posterior_summary[,3] < 0 & posterior_summary[,4] < 0] <- "*"
  posterior_summary$xx[posterior_summary[,3] > 0 & posterior_summary[,4] > 0] <- "*"
  names(posterior_summary)[names(posterior_summary) == "xx"] <- " "
  posterior_summary
}

Code to run models on offspring sex ratio

run_sex_ratio_models <- function(dataset){
  
  if(dataset == "experiment1"){
    dat <- experiment1
    output1 <- "model_output/sex_ratio_exp1_model_selection.rds"
    output2 <- "model_output/sex_ratio_exp1.rds"
  } else {
    dat <- experiment2
    output1 <- "model_output/sex_ratio_exp2_model_selection.rds"
    output2 <- "model_output/sex_ratio_exp2.rds"
  }
  
  sex_ratio_full <- brm(Male.offspring | trials(Total) ~ Haplotype + (1 | Block) + (1 | Female),
                        family = "binomial", control = list(adapt_delta = 0.99), save_all_pars = TRUE,
                        iter = 40000, chains = 4, cores = 4,
                        data = dat %>%
                          mutate(Total = Male.offspring + Female.offspring) %>%
                          filter(!is.na(Total)) %>%
                          filter(Total > 0))
  
  sex_ratio_null <- brm(Male.offspring | trials(Total) ~ (1 | Block) + (1 | Female),
                        family = "binomial", control = list(adapt_delta = 0.99), save_all_pars = TRUE,
                        iter = 40000, chains = 4, cores = 4,
                        data = dat %>%
                          mutate(Total = Male.offspring + Female.offspring) %>%
                          filter(!is.na(Total)) %>%
                          filter(Total > 0))
  
  # Run model comparion of the models with and without mtDNA haplotype
  comparison <- post_prob(sex_ratio_full, sex_ratio_null)
  names(comparison)[grep("full", names(comparison))] <- "Male mtDNA"
  names(comparison)[grep("null", names(comparison))] <- "No fixed effects"
  comparison %>% as.list %>% as_tibble %>% 
    gather(`Fixed effects`, `Posterior model probability`) %>% arrange(-`Posterior model probability`) %>%
    saveRDS(output1)
  
  
  data.frame(summary(sex_ratio_expt1_full)$fixed) %>%
    rbind(data.frame(do.call("rbind", summary(sex_ratio_expt1_full)$random))) %>% 
    add_significance_stars() %>% saveRDS(output2)
}

Generate all statistical results

# Run all the models listed in these "formula" objects
if(!file.exists("model_output/exp2_model_ranks.rds")){
  
  formulas <- c(
    "Haplotype * Order.of.exposure +",
    "Haplotype + Order.of.exposure +",
    "Haplotype +",
    "Order.of.exposure +",
    ""
  )
  
  # Rank all the models by their posterior model probability (a bit like Bayesian AIC)
  parse_model_ranks <- function(model_ranks, formulas){
    names(model_ranks) <- formulas[as.numeric(str_extract(str_extract(names(model_ranks), '\\[[^()]+\\]'), "[:digit:]+"))]
    names(model_ranks)[names(model_ranks) == ""] <- "Null"
    model_ranks <- model_ranks %>% as.list %>% as_tibble %>% gather(model, posterior_prob) %>% arrange(-posterior_prob)
    model_ranks$model <- substr(model_ranks$model, 1, nchar(model_ranks$model) - 2)
    model_ranks$model[model_ranks$model == "Nu"] <- "Null"
    names(model_ranks) <- c("Fixed effects", "Posterior model probability")
    model_ranks$`Posterior model probability` <- format(model_ranks$`Posterior model probability`, nsmall = 3) 
    model_ranks
  }
  
  # Run all the models, save results in a list
  experiment_1_results <- lapply(formulas, run_model, experiment = 1)
  # Name the model list
  names_formulae <- c(substr(formulas[1:(length(formulas) - 1)], 1, nchar(formulas[1:(length(formulas) - 1)]) - 2), "No fixed effects")
  names(experiment_1_results) <- names_formulae
  # Compute inter-group differences, using the full model
  difference_tables_expt_1 <- make_difference_tables(experiment_1_results[[1]]$posterior_by_vial)
  
  # Compare the experiment 1 models using posterior model probability
  exp1_model_ranks <- post_prob(experiment_1_results[[1]]$model, 
                                experiment_1_results[[2]]$model,
                                experiment_1_results[[3]]$model,
                                experiment_1_results[[4]]$model,
                                experiment_1_results[[5]]$model) %>% 
    round(3) %>% parse_model_ranks(formulas)
  
  # Save the experiment 1 results to disk, then clean up
  saveRDS(experiment_1_results[[1]], "model_output/experiment1_full_model.rds")
  saveRDS(difference_tables_expt_1, "model_output/difference_tables_expt_1.rds")
  saveRDS(exp1_model_ranks, "model_output/exp1_model_ranks.rds")
  rm(list = c("experiment_1_results", "difference_tables_expt_1", "exp1_model_ranks"))
  
  # EXPERIMENT 2 - same again
  experiment_2_results <- lapply(formulas, run_model, experiment = 2)
  names(experiment_2_results) <- names_formulae
  difference_tables_expt_2 <- make_difference_tables(experiment_2_results[[1]]$posterior_by_vial)
  exp2_model_ranks <- post_prob(experiment_2_results[[1]]$model, 
                                experiment_2_results[[2]]$model,
                                experiment_2_results[[3]]$model,
                                experiment_2_results[[4]]$model,
                                experiment_2_results[[5]]$model) %>% 
    round(3) %>% parse_model_ranks(formulas)
  
  # Save the experiment 2 results to disk, then clean up
  saveRDS(experiment_2_results[[1]], "model_output/experiment2_full_model.rds")
  saveRDS(difference_tables_expt_2, "model_output/difference_tables_expt_2.rds")
  saveRDS(exp2_model_ranks, "model_output/exp2_model_ranks.rds")
  rm(list = c("experiment_2_results", "difference_tables_expt_2", "exp2_model_ranks"))
} 

if(!file.exists("model_output/sex_ratio_exp1.rds")) run_sex_ratio_models("experiment1")
if(!file.exists("model_output/sex_ratio_exp2.rds")) run_sex_ratio_models("experiment2")

# If done already, just load the saved versions
experiment1_full_model <- readRDS("model_output/experiment1_full_model.rds")
experiment2_full_model <- readRDS("model_output/experiment2_full_model.rds")
difference_tables_expt_1 <- readRDS("model_output/difference_tables_expt_1.rds")
difference_tables_expt_2 <- readRDS("model_output/difference_tables_expt_2.rds")
exp1_model_ranks <- readRDS("model_output/exp1_model_ranks.rds")
exp2_model_ranks <- readRDS("model_output/exp2_model_ranks.rds")

Diagnostic plots for the models

Model of Experiment 1

The plot shows a density plot of the actual data (dark line), along with density plots of predicted data generated by 10 randomly selected draws from the posterior. The posterior does a reasonably good job of approximating the true distribution of the fecundity data from Experiment 1, suggesting that the model fit is good enough for reliable statistical inference. Since a multivariate model was used for Experiment 1, we have plotted the four response variables (i.e. fecundity in vials 1-4) separately.

grid.arrange(
  pp_check(experiment1_full_model[[1]], resp = "Vial1") + labs(subtitle="Vial 1"),
  pp_check(experiment1_full_model[[1]], resp = "Vial2") + labs(subtitle="Vial 2"),
  pp_check(experiment1_full_model[[1]], resp = "Vial3") + labs(subtitle="Vial 3"),
  pp_check(experiment1_full_model[[1]], resp = "Vial4") + labs(subtitle="Vial 4"))

Model of Experiment 2

The plot shows a density plot of the actual data (dark line), along with density plots of predicted data generated by 10 randomly selected draws from the posterior. The posterior does a reasonably good job of approximating the true distribution of the fecundity data from Experiment 2, suggesting that the model fit is good enough for reliable statistical inference. Since a univariate model was used for Experiment 2, the figure shows a single distribution of observations from all four vials.

grid.arrange(
  pp_check(experiment2_full_model[[1]], resp = "Vial1") + labs(subtitle="Vial 1"),
  pp_check(experiment2_full_model[[1]], resp = "Vial2") + labs(subtitle="Vial 2"),
  pp_check(experiment2_full_model[[1]], resp = "Vial3") + labs(subtitle="Vial 3"),
  pp_check(experiment2_full_model[[1]], resp = "Vial4") + labs(subtitle="Vial 4"))

Experiment 1: Effect of mtDNA in males on female productivity

Statistical results

Model selection table

Table 1: The posterior probabilities for five models with different fixed effects, for Experiment 1. All models had the same random effect structure (i.e. a random intercept for each experimental block), and the same error distribution. The model with the main effect Haplotype and Order of exposure, but no 2-way interaction, fit the data much better than the other four models: it has >99% chance of being the best-fitting model in the set.

exp1_model_ranks %>%
  pander(split.cell = 40, split.table = Inf)
Fixed effects Posterior model probability
Haplotype * Order.of.exposure 0.778
Haplotype + Order.of.exposure 0.176
Haplotype 0.038
Order.of.exposure 0.008
Null 0.000

Parameter estimates from the full model

Table S1: Results of the ‘full model’ of Experiment 1, which contains the fixed factors Haplotype (i.e. the mitochondrial strain of the males), Order of exposure (i.e. whether the female first encountered males in her first or second vial), and their interaction. The model is a multivariate Bayesian generalized linear mixed model, with experimental block as a random factor and zero-inflated negative binomial errors. The Bayesian \(R^2\) was 0.18 (95% CIs = 0.1-0.28). Note that the presence of \(\hat{R}\) (Rhat) values > 1 (usually a sign that the model has not converged) is misleading in this case, because the results were obtained by running the same model on five imputed datasets (to handle missing values), which gives a false signal of non-convergence. The imputed missing values were mostly from Vial 4, due to an accident in which 7 females’ fourth vials were lost (this explains the lower effective sample size for parameters involving Vial 4).

save_and_display_table <- function(tabl, filename){
  saveRDS(tabl, file.path("supp_tables", filename))
  pander(tabl, split.cell = 40, split.table = Inf)
}

get_fixed_effects_with_p_values <- function(brms_model){
  fixed_effects <- data.frame(summary(brms_model)$fixed) %>%
    rownames_to_column("Parameter")
  fixed_effects$p <- (100 - as.data.frame(p_direction(brms_model))$pd) / 100
  fixed_effects %>% select(Parameter, everything())
}

get_random_effects <- function(brms_model){
  random_effects <- data.frame(do.call("rbind", summary(brms_model)$random)) %>%
    rownames_to_column("Parameter")
  random_effects$p <- NA
  random_effects %>% select(Parameter, everything())
}

get_fixed_effects_with_p_values(experiment1_full_model[[1]]) %>%
  rbind(get_random_effects(experiment1_full_model[[1]])) %>% 
  mutate(` ` = ifelse(p < 0.05, "*", " "),
         ` ` = replace(` `, is.na(` `), " "),
         p = format(round(p, 3), nsmall = 3)) %>%
  save_and_display_table("tab_S1.rds")
Parameter Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat p
Vial1_Intercept 3.19 0.11 2.98 3.41 51017.0 1.00 0.000 *
Vial2_Intercept 3.21 0.12 2.99 3.44 64876.9 1.00 0.497
Vial3_Intercept 3.25 0.14 2.99 3.52 4850.4 1.01 0.498
Vial4_Intercept 2.88 0.18 2.54 3.23 300.1 1.04 0.499
Vial1_HaplotypeBrownsville 0.00 0.00 0.00 0.00 396501.4 1.00 0.492
Vial1_HaplotypeDahomey 0.00 0.00 0.00 0.00 401910.9 1.00 0.205
Vial1_HaplotypeIsrael 0.00 0.00 0.00 0.00 397367.3 1.00 0.410
Vial1_HaplotypeSweden 0.00 0.00 0.00 0.00 397523.8 1.00 0.242
Vial1_Order.of.exposureFirst 0.07 0.09 -0.10 0.25 105883.6 1.00 0.288
Vial1_HaplotypeBrownsville:Order.of.exposureFirst -0.03 0.12 -0.26 0.21 134375.6 1.00 0.147
Vial1_HaplotypeDahomey:Order.of.exposureFirst 0.08 0.12 -0.15 0.31 130756.2 1.00 0.000 *
Vial1_HaplotypeIsrael:Order.of.exposureFirst 0.06 0.12 -0.16 0.29 131669.6 1.00 0.171
Vial1_HaplotypeSweden:Order.of.exposureFirst -0.12 0.12 -0.35 0.11 134067.5 1.00 0.436
Vial2_HaplotypeBrownsville -0.13 0.13 -0.39 0.13 92562.0 1.00 0.191
Vial2_HaplotypeDahomey 0.02 0.13 -0.24 0.28 91290.6 1.00 0.363
Vial2_HaplotypeIsrael 0.11 0.13 -0.14 0.37 4629.6 1.01 0.020 *
Vial2_HaplotypeSweden -0.05 0.13 -0.31 0.21 3490.8 1.01 0.439
Vial2_Order.of.exposureFirst 0.26 0.13 0.01 0.51 65239.2 1.00 0.218
Vial2_HaplotypeBrownsville:Order.of.exposureFirst 0.03 0.18 -0.33 0.39 24230.8 1.00 0.471
Vial2_HaplotypeDahomey:Order.of.exposureFirst 0.14 0.18 -0.21 0.50 86085.5 1.00 0.404
Vial2_HaplotypeIsrael:Order.of.exposureFirst 0.01 0.18 -0.34 0.36 46348.4 1.00 0.000 *
Vial2_HaplotypeSweden:Order.of.exposureFirst -0.04 0.18 -0.40 0.31 17649.7 1.00 0.163
Vial3_HaplotypeBrownsville -0.14 0.14 -0.41 0.14 4053.6 1.01 0.234
Vial3_HaplotypeDahomey 0.10 0.14 -0.17 0.37 1410.3 1.01 0.077
Vial3_HaplotypeIsrael 0.19 0.14 -0.08 0.46 1140.9 1.01 0.132
Vial3_HaplotypeSweden 0.15 0.14 -0.12 0.42 4257.4 1.01 0.493
Vial3_Order.of.exposureFirst 0.00 0.14 -0.27 0.27 7444.0 1.01 0.478
Vial3_HaplotypeBrownsville:Order.of.exposureFirst 0.01 0.19 -0.37 0.39 2565.8 1.01 0.431
Vial3_HaplotypeDahomey:Order.of.exposureFirst 0.03 0.19 -0.34 0.40 6769.3 1.01 0.308
Vial3_HaplotypeIsrael:Order.of.exposureFirst -0.09 0.19 -0.46 0.27 3844.6 1.01 0.164
Vial3_HaplotypeSweden:Order.of.exposureFirst -0.18 0.19 -0.55 0.18 39766.9 1.00 0.000 *
Vial4_HaplotypeBrownsville -0.07 0.19 -0.44 0.29 196.6 1.06 0.346
Vial4_HaplotypeDahomey 0.11 0.17 -0.23 0.45 247.8 1.05 0.263
Vial4_HaplotypeIsrael 0.11 0.17 -0.22 0.44 406.2 1.03 0.257
Vial4_HaplotypeSweden 0.21 0.18 -0.14 0.56 219.0 1.05 0.117
Vial4_Order.of.exposureFirst 0.16 0.17 -0.17 0.50 261.8 1.05 0.168
Vial4_HaplotypeBrownsville:Order.of.exposureFirst 0.15 0.24 -0.33 0.63 277.0 1.04 0.276
Vial4_HaplotypeDahomey:Order.of.exposureFirst 0.10 0.23 -0.36 0.55 239.5 1.05 0.340
Vial4_HaplotypeIsrael:Order.of.exposureFirst 0.15 0.23 -0.30 0.59 447.4 1.03 0.253
Vial4_HaplotypeSweden:Order.of.exposureFirst -0.09 0.24 -0.56 0.37 193.1 1.06 0.344
sd(Vial1_Intercept) 0.25 0.11 0.11 0.53 57320.4 1.00 NA
sd(Vial2_Intercept) 0.16 0.08 0.06 0.35 59192.4 1.00 NA
sd(Vial3_Intercept) 0.22 0.10 0.10 0.46 70859.9 1.00 NA
sd(Vial4_Intercept) 0.28 0.12 0.13 0.57 70087.1 1.00 NA
cor(Vial1_Intercept,Vial2_Intercept) 0.28 0.35 -0.47 0.85 106207.0 1.00 NA
cor(Vial1_Intercept,Vial3_Intercept) 0.21 0.35 -0.52 0.80 109165.8 1.00 NA
cor(Vial2_Intercept,Vial3_Intercept) 0.59 0.30 -0.18 0.96 105102.2 1.00 NA
cor(Vial1_Intercept,Vial4_Intercept) 0.55 0.31 -0.20 0.95 4260.1 1.01 NA
cor(Vial2_Intercept,Vial4_Intercept) 0.46 0.33 -0.30 0.93 121274.1 1.00 NA
cor(Vial3_Intercept,Vial4_Intercept) 0.39 0.33 -0.36 0.89 129235.4 1.00 NA

Treatment group means

Table S2: Posterior treatment group means for Experiment 1, estimated from the full model. Each row shows the median, error, and 95% quantiles on the posterior mean progeny production for one combination of Haplotype, vial number (i.e. the age category of the focal flies), and order of exposure treatment.

difference_tables_expt_1$posterior_treatment_means %>% 
  mutate_if(is.numeric, round, 2) %>%
  save_and_display_table("tab_S2.rds")
Haplotype Order of exposure Vial Estimate Est.Error Q2.5 Q97.5 Males in the vial
Barcelona Males in vials 2 and 4 1 24.41 2.71 19.53 30.13 No
Brownsville Males in vials 2 and 4 1 24.41 2.71 19.53 30.13 No
Dahomey Males in vials 2 and 4 1 24.41 2.71 19.53 30.13 No
Israel Males in vials 2 and 4 1 24.41 2.71 19.53 30.13 No
Sweden Males in vials 2 and 4 1 24.41 2.71 19.53 30.13 No
Barcelona Males in vials 1 and 3 1 26.35 3.49 20.22 33.75 Yes
Brownsville Males in vials 1 and 3 1 25.68 3.47 19.58 33.07 Yes
Dahomey Males in vials 1 and 3 1 28.56 3.80 21.92 36.68 Yes
Israel Males in vials 1 and 3 1 28.10 3.74 21.54 36.06 Yes
Sweden Males in vials 1 and 3 1 23.32 3.14 17.82 30.03 Yes
Barcelona Males in vials 2 and 4 2 24.57 2.89 19.44 30.75 Yes
Brownsville Males in vials 2 and 4 2 21.66 2.54 17.17 27.12 Yes
Dahomey Males in vials 2 and 4 2 25.08 2.89 19.94 31.28 Yes
Israel Males in vials 2 and 4 2 27.51 3.14 21.91 34.21 Yes
Sweden Males in vials 2 and 4 2 23.46 2.72 18.63 29.30 Yes
Barcelona Males in vials 1 and 3 2 31.94 3.53 25.63 39.43 No
Brownsville Males in vials 1 and 3 2 29.01 3.40 22.94 36.26 No
Dahomey Males in vials 1 and 3 2 37.52 4.23 29.97 46.56 No
Israel Males in vials 1 and 3 2 36.26 4.05 29.10 44.96 No
Sweden Males in vials 1 and 3 2 29.23 3.28 23.35 36.23 No
Barcelona Males in vials 2 and 4 3 25.00 3.44 19.01 32.45 No
Brownsville Males in vials 2 and 4 3 21.80 2.91 16.70 28.11 No
Dahomey Males in vials 2 and 4 3 27.59 3.60 21.28 35.38 No
Israel Males in vials 2 and 4 3 30.27 3.91 23.41 38.74 No
Sweden Males in vials 2 and 4 3 29.06 3.79 22.40 37.22 No
Barcelona Males in vials 1 and 3 3 25.03 3.24 19.32 32.01 Yes
Brownsville Males in vials 1 and 3 3 22.09 3.00 16.84 28.56 Yes
Dahomey Males in vials 1 and 3 3 28.57 3.71 22.06 36.60 Yes
Israel Males in vials 1 and 3 3 27.66 3.59 21.34 35.42 Yes
Sweden Males in vials 1 and 3 3 24.24 3.13 18.71 30.97 Yes
Barcelona Males in vials 2 and 4 4 16.62 3.00 11.54 23.26 Yes
Brownsville Males in vials 2 and 4 4 15.43 2.71 10.78 21.34 Yes
Dahomey Males in vials 2 and 4 4 18.50 3.00 13.37 25.08 Yes
Israel Males in vials 2 and 4 4 18.49 3.00 13.36 25.06 Yes
Sweden Males in vials 2 and 4 4 20.42 3.35 14.69 27.76 Yes
Barcelona Males in vials 1 and 3 4 19.53 3.13 14.10 26.30 No
Brownsville Males in vials 1 and 3 4 21.03 3.56 14.98 28.84 No
Dahomey Males in vials 1 and 3 4 24.00 3.88 17.35 32.49 No
Israel Males in vials 1 and 3 4 25.27 3.99 18.42 33.97 No
Sweden Males in vials 1 and 3 4 21.89 3.52 15.79 29.50 No
Barcelona Males in vials 2 and 4 Total across all 4 vials 90.61 7.31 77.27 106.06 No
Barcelona Males in vials 1 and 3 Total across all 4 vials 102.85 8.18 87.86 120.04 No
Brownsville Males in vials 2 and 4 Total across all 4 vials 83.31 6.63 71.15 97.29 No
Brownsville Males in vials 1 and 3 Total across all 4 vials 97.80 8.14 82.89 114.85 No
Dahomey Males in vials 2 and 4 Total across all 4 vials 95.59 7.53 81.75 111.44 No
Dahomey Males in vials 1 and 3 Total across all 4 vials 118.64 9.52 101.28 138.60 No
Israel Males in vials 2 and 4 Total across all 4 vials 100.68 7.94 86.16 117.42 No
Israel Males in vials 1 and 3 Total across all 4 vials 117.29 9.40 100.07 137.04 No
Sweden Males in vials 2 and 4 Total across all 4 vials 97.36 7.77 83.14 113.72 No
Sweden Males in vials 1 and 3 Total across all 4 vials 98.69 7.96 84.10 115.45 No

Predicted average fitness for each group

The figure shows the predicted average progeny count for each combination of predictors, as estimated from a model containing Haplotype and the Haplotype \({\times}\) Age interaction.

make_graph <- function(difference_tables, exp = 1){
  
  if(exp == 1){
    difference_tables$posterior_treatment_means[difference_tables$posterior_treatment_means == "No"] <- "Low"
    difference_tables$posterior_treatment_means[difference_tables$posterior_treatment_means == "Yes"] <- "High"
    leg.name <- "Male exposure"
  }
  
  if(exp == 2){
    leg.name <- "Males present"
  }
  
  pd <- position_dodge(0.18)
  
  print( difference_tables$posterior_treatment_means)
  
  difference_tables$posterior_treatment_means %>%
    filter(Vial != "Total across all 4 vials") %>%
    ggplot(aes(x = Vial,
               y = Estimate,
               group = `Order of exposure`)) +
    geom_line(aes(linetype = `Order of exposure`), position = pd) +
    geom_errorbar(aes(ymin = Estimate - Est.Error, ymax = Estimate + Est.Error), width = 0, position = pd, alpha = 0.4) +
    geom_point(aes(fill = `Males in the vial`), size = 2, pch = 21, position = pd) +
    scale_fill_brewer(palette = "Set3", name = leg.name) +
    scale_linetype(name = "Exposure treatment") + 
    facet_grid(~ Haplotype) +
    xlab("Age category (3-day increments)") +
    ylab("Mean number of progeny produced\n(posterior estimates \u00B1 95% CIs)") +
    theme_bw(15) +
    theme(panel.grid.minor.x = element_blank(),
          text = element_text(family = "Lato"),
          strip.background = element_rect(fill = "seashell")) +
    guides(linetype = guide_legend(order=1),
           fill = guide_legend(order=2))
}

fig1 <- make_graph(difference_tables_expt_1) + 
  labs(title = "Experiment 1", 
       subtitle = "DGRP-517 females interacting with mitochondrial strain males") 


dir.create("figures", showWarnings = FALSE)
ggsave("figures/fig1.pdf", fig1, width = 11, height = 6)

fig1


Figure 1: The posterior estimate of the average number of progeny produced in Experiment 1, for each combination of predictor variables. The points and error bars show the posterior average and the associated 95 credible intervals of model predictions derived from the mixed model shown in Table S1.

Quantifying differences among treatment groups

Table S3: Posterior estimates of the differences in mean offspring production for each possible pairs of male haplotypes in Experiment 1, either within a particular vial or summed across the four vials, and split by ‘Order of exposure’ treatment. Males from the Dahomey, Israel and Sweden haplotypes were associated with higher offspring production than the Brownsville haplotype, and there were also differences between Dahomey and Sweden, Dahomey and Barcelona, and Israel and Sweden (particularly in vial 2; see Figures 1 and 3). Asterisks mark statistically significant differences. The numbers in parentheses are 95% credible intervals. The ‘Relative difference’ column gives the absolute difference in means divided by the mean for haplotype 1.

difference_tables_expt_1$differences_between_haplos %>%
  mutate_if(is.numeric, round, 2) %>%
  save_and_display_table("tab_S3.rds")
Vial Order of exposure Haplotype 1 Haplotype 2 Difference in fecundity SE Relative difference Significant
Total across all 4 vials First Brownsville Barcelona -5.05 (-18.47 to 8.47) 6.85 0.07 (0 to 0.2)
Total across all 4 vials First Dahomey Barcelona 15.79 (1.62 to 30.58) 7.36 0.13 (0.02 to 0.24) *
Total across all 4 vials First Dahomey Brownsville 20.84 (6.19 to 36.11) 7.63 0.17 (0.06 to 0.28) *
Total across all 4 vials First Dahomey Israel 1.35 (-13.81 to 16.56) 7.72 0.05 (0 to 0.15)
Total across all 4 vials First Dahomey Sweden 19.95 (5.89 to 34.74) 7.34 0.17 (0.05 to 0.27) *
Total across all 4 vials First Israel Barcelona 14.44 (0.42 to 29.01) 7.26 0.12 (0.01 to 0.23) *
Total across all 4 vials First Israel Brownsville 19.49 (4.95 to 34.5) 7.52 0.16 (0.05 to 0.27) *
Total across all 4 vials First Sweden Barcelona -4.16 (-17.22 to 8.63) 6.56 0.06 (0 to 0.19)
Total across all 4 vials First Sweden Brownsville 0.88 (-12.54 to 14.14) 6.78 0.05 (0 to 0.15)
Total across all 4 vials First Sweden Israel -18.6 (-33.14 to -4.77) 7.24 0.19 (0.05 to 0.35) *
Total across all 4 vials Second Brownsville Barcelona -7.3 (-18.32 to 3.38) 5.52 0.09 (0 to 0.23)
Total across all 4 vials Second Dahomey Barcelona 4.98 (-6.31 to 16.39) 5.77 0.06 (0 to 0.16)
Total across all 4 vials Second Dahomey Brownsville 12.28 (1.78 to 23.24) 5.46 0.13 (0.02 to 0.23) *
Total across all 4 vials Second Dahomey Israel -5.09 (-16.77 to 6.51) 5.91 0.07 (0 to 0.18)
Total across all 4 vials Second Dahomey Sweden -1.77 (-13.16 to 9.52) 5.78 0.05 (0 to 0.15)
Total across all 4 vials Second Israel Barcelona 10.07 (-1.47 to 21.76) 5.89 0.1 (0.01 to 0.2)
Total across all 4 vials Second Israel Brownsville 17.37 (6.43 to 28.96) 5.73 0.17 (0.07 to 0.27) *
Total across all 4 vials Second Sweden Barcelona 6.75 (-4.71 to 18.41) 5.87 0.08 (0 to 0.18)
Total across all 4 vials Second Sweden Brownsville 14.05 (3.34 to 25.35) 5.61 0.14 (0.04 to 0.24) *
Total across all 4 vials Second Sweden Israel -3.32 (-15.08 to 8.47) 5.98 0.06 (0 to 0.16)
Vial 1 First Brownsville Barcelona -0.67 (-6.74 to 5.44) 3.08 0.1 (0 to 0.29)
Vial 1 First Dahomey Barcelona 2.21 (-4.01 to 8.61) 3.20 0.11 (0 to 0.27)
Vial 1 First Dahomey Brownsville 2.88 (-3.39 to 9.39) 3.24 0.12 (0.01 to 0.29)
Vial 1 First Dahomey Israel 0.46 (-6.07 to 7.01) 3.32 0.09 (0 to 0.26)
Vial 1 First Dahomey Sweden 5.24 (-0.73 to 11.65) 3.14 0.18 (0.02 to 0.35)
Vial 1 First Israel Barcelona 1.75 (-4.43 to 8.13) 3.18 0.1 (0 to 0.26)
Vial 1 First Israel Brownsville 2.42 (-3.83 to 8.88) 3.22 0.11 (0 to 0.28)
Vial 1 First Sweden Barcelona -3.02 (-8.95 to 2.65) 2.95 0.15 (0.01 to 0.42)
Vial 1 First Sweden Brownsville -2.36 (-8.32 to 3.37) 2.97 0.14 (0.01 to 0.39)
Vial 1 First Sweden Israel -4.78 (-11.07 to 1.15) 3.11 0.22 (0.01 to 0.52)
Vial 1 Second Brownsville Barcelona 0 (-0.05 to 0.05) 0.02 0 (0 to 0)
Vial 1 Second Dahomey Barcelona 0 (-0.05 to 0.05) 0.02 0 (0 to 0)
Vial 1 Second Dahomey Brownsville 0 (-0.07 to 0.07) 0.03 0 (0 to 0)
Vial 1 Second Dahomey Israel 0 (-0.07 to 0.07) 0.03 0 (0 to 0)
Vial 1 Second Dahomey Sweden 0 (-0.07 to 0.07) 0.03 0 (0 to 0)
Vial 1 Second Israel Barcelona 0 (-0.05 to 0.05) 0.02 0 (0 to 0)
Vial 1 Second Israel Brownsville 0 (-0.07 to 0.07) 0.03 0 (0 to 0)
Vial 1 Second Sweden Barcelona 0 (-0.05 to 0.05) 0.02 0 (0 to 0)
Vial 1 Second Sweden Brownsville 0 (-0.07 to 0.07) 0.03 0 (0 to 0)
Vial 1 Second Sweden Israel 0 (-0.07 to 0.07) 0.03 0 (0 to 0)
Vial 2 First Brownsville Barcelona -2.94 (-10.66 to 4.73) 3.89 0.14 (0.01 to 0.41)
Vial 2 First Dahomey Barcelona 5.57 (-2.78 to 14.35) 4.35 0.15 (0.01 to 0.33)
Vial 2 First Dahomey Brownsville 8.51 (0.12 to 17.38) 4.38 0.22 (0.03 to 0.4) *
Vial 2 First Dahomey Israel 1.26 (-7.74 to 10.44) 4.61 0.1 (0 to 0.27)
Vial 2 First Dahomey Sweden 8.28 (0.2 to 16.98) 4.26 0.22 (0.03 to 0.39) *
Vial 2 First Israel Barcelona 4.31 (-3.85 to 12.77) 4.21 0.13 (0.01 to 0.31)
Vial 2 First Israel Brownsville 7.25 (-0.88 to 15.77) 4.23 0.2 (0.02 to 0.38)
Vial 2 First Sweden Barcelona -2.71 (-10.25 to 4.64) 3.78 0.13 (0 to 0.39)
Vial 2 First Sweden Brownsville 0.23 (-7.29 to 7.61) 3.78 0.1 (0 to 0.29)
Vial 2 First Sweden Israel -7.02 (-15.38 to 0.86) 4.13 0.25 (0.02 to 0.58)
Vial 2 Second Brownsville Barcelona -2.91 (-9.2 to 3.1) 3.11 0.17 (0.01 to 0.47)
Vial 2 Second Dahomey Barcelona 0.51 (-6.04 to 7.01) 3.30 0.1 (0 to 0.29)
Vial 2 Second Dahomey Brownsville 3.42 (-2.6 to 9.63) 3.10 0.15 (0.01 to 0.33)
Vial 2 Second Dahomey Israel -2.42 (-9.21 to 4.26) 3.40 0.14 (0.01 to 0.41)
Vial 2 Second Dahomey Sweden 1.62 (-4.59 to 7.9) 3.17 0.11 (0 to 0.29)
Vial 2 Second Israel Barcelona 2.94 (-3.8 to 9.74) 3.42 0.13 (0.01 to 0.31)
Vial 2 Second Israel Brownsville 5.84 (-0.38 to 12.41) 3.24 0.21 (0.02 to 0.39)
Vial 2 Second Sweden Barcelona -1.11 (-7.46 to 5.14) 3.19 0.12 (0 to 0.36)
Vial 2 Second Sweden Brownsville 1.8 (-4.07 to 7.77) 3.00 0.12 (0 to 0.3)
Vial 2 Second Sweden Israel -4.04 (-10.66 to 2.33) 3.30 0.19 (0.01 to 0.51)
Vial 3 First Brownsville Barcelona -2.94 (-9.35 to 3.27) 3.20 0.17 (0.01 to 0.48)
Vial 3 First Dahomey Barcelona 3.54 (-3.23 to 10.62) 3.51 0.14 (0.01 to 0.32)
Vial 3 First Dahomey Brownsville 6.48 (-0.18 to 13.64) 3.50 0.22 (0.03 to 0.41)
Vial 3 First Dahomey Israel 0.91 (-6.27 to 8.16) 3.66 0.1 (0 to 0.28)
Vial 3 First Dahomey Sweden 4.33 (-2.29 to 11.37) 3.46 0.16 (0.01 to 0.34)
Vial 3 First Israel Barcelona 2.63 (-4.06 to 9.55) 3.44 0.12 (0.01 to 0.3)
Vial 3 First Israel Brownsville 5.57 (-1.01 to 12.52) 3.43 0.2 (0.02 to 0.39)
Vial 3 First Sweden Barcelona -0.79 (-7.09 to 5.46) 3.19 0.11 (0 to 0.33)
Vial 3 First Sweden Brownsville 2.15 (-4.02 to 8.41) 3.15 0.12 (0.01 to 0.31)
Vial 3 First Sweden Israel -3.42 (-10.27 to 3.14) 3.40 0.17 (0.01 to 0.47)
Vial 3 Second Brownsville Barcelona -3.2 (-9.97 to 3.24) 3.34 0.18 (0.01 to 0.51)
Vial 3 Second Dahomey Barcelona 2.59 (-4.58 to 9.85) 3.65 0.13 (0.01 to 0.32)
Vial 3 Second Dahomey Brownsville 5.79 (-0.61 to 12.63) 3.37 0.21 (0.02 to 0.39)
Vial 3 Second Dahomey Israel -2.68 (-10.24 to 4.74) 3.79 0.14 (0.01 to 0.41)
Vial 3 Second Dahomey Sweden -1.47 (-8.86 to 5.76) 3.71 0.12 (0 to 0.36)
Vial 3 Second Israel Barcelona 5.27 (-2.11 to 12.87) 3.79 0.18 (0.01 to 0.37)
Vial 3 Second Israel Brownsville 8.47 (1.76 to 15.77) 3.56 0.27 (0.07 to 0.44) *
Vial 3 Second Sweden Barcelona 4.06 (-3.21 to 11.5) 3.72 0.15 (0.01 to 0.34)
Vial 3 Second Sweden Brownsville 7.26 (0.64 to 14.42) 3.49 0.24 (0.04 to 0.42) *
Vial 3 Second Sweden Israel -1.22 (-8.81 to 6.36) 3.84 0.11 (0 to 0.34)
Vial 4 First Brownsville Barcelona 1.5 (-4.76 to 8.29) 3.30 0.13 (0.01 to 0.34)
Vial 4 First Dahomey Barcelona 4.47 (-2.05 to 11.63) 3.47 0.19 (0.01 to 0.4)
Vial 4 First Dahomey Brownsville 2.96 (-4.38 to 10.49) 3.75 0.15 (0.01 to 0.37)
Vial 4 First Dahomey Israel -1.28 (-8.79 to 6.16) 3.78 0.14 (0.01 to 0.42)
Vial 4 First Dahomey Sweden 2.1 (-4.83 to 9.61) 3.65 0.13 (0.01 to 0.35)
Vial 4 First Israel Barcelona 5.74 (-0.82 to 13.09) 3.52 0.22 (0.02 to 0.43)
Vial 4 First Israel Brownsville 4.24 (-3.06 to 11.78) 3.75 0.18 (0.01 to 0.39)
Vial 4 First Sweden Barcelona 2.36 (-3.72 to 8.75) 3.15 0.14 (0.01 to 0.34)
Vial 4 First Sweden Brownsville 0.86 (-6.27 to 7.66) 3.51 0.13 (0.01 to 0.35)
Vial 4 First Sweden Israel -3.38 (-10.86 to 3.64) 3.66 0.19 (0.01 to 0.56)
Vial 4 Second Brownsville Barcelona -1.19 (-7.37 to 4.69) 3.04 0.17 (0.01 to 0.55)
Vial 4 Second Dahomey Barcelona 1.88 (-4.19 to 8) 3.07 0.15 (0.01 to 0.38)
Vial 4 Second Dahomey Brownsville 3.07 (-2.63 to 9.07) 2.95 0.18 (0.01 to 0.41)
Vial 4 Second Dahomey Israel 0.01 (-5.69 to 5.75) 2.88 0.12 (0 to 0.36)
Vial 4 Second Dahomey Sweden -1.92 (-8.2 to 4.11) 3.11 0.16 (0.01 to 0.5)
Vial 4 Second Israel Barcelona 1.86 (-4.06 to 7.77) 2.98 0.15 (0.01 to 0.37)
Vial 4 Second Israel Brownsville 3.06 (-2.63 to 9.01) 2.95 0.18 (0.01 to 0.41)
Vial 4 Second Sweden Barcelona 3.8 (-2.61 to 10.49) 3.30 0.2 (0.01 to 0.43)
Vial 4 Second Sweden Brownsville 4.99 (-0.93 to 11.47) 3.14 0.24 (0.02 to 0.46)
Vial 4 Second Sweden Israel 1.94 (-4.11 to 8.3) 3.14 0.14 (0.01 to 0.35)


Table S4: Average difference in the effect of the ‘exposed first’ and ‘exposed second’ treatments for each pair of male haplotypes in Experiment 1, split by vial or summed over all 4 vials. For example, a difference of 10 means that the effect of the ‘exposed first’ treatment was more positive by 10 progeny in one haplotype than the other. Only one comparison showed a significant difference: the offspring production of females paired with Dahomey males was more strongly affected by the order of exposure treatment than for females paired with Sweden males. Specifically, females benefitted from being housed with Dahomey males in the first vial rather than the second, but there was no such benefit for Sweden males (see Figure 1). The numbers in parentheses are 95% credible intervals, and the the ‘Relative difference’ column was calculated as in Table S3.

difference_tables_expt_1$haplo_by_exposure_effects %>%
  select(-`Relative difference`) %>%
  mutate_if(is.numeric, round, 2) %>%
  save_and_display_table("tab_S4.rds")
Vial Haplotype 1 Haplotype 2 Difference in effect of exposure order SE Significant
Total across all 4 vials Brownsville Barcelona 2.25 (-14.72 to 19.55) 8.72
Total across all 4 vials Dahomey Barcelona 10.81 (-7.25 to 29.32) 9.31
Total across all 4 vials Dahomey Brownsville 8.56 (-9.41 to 26.77) 9.22
Total across all 4 vials Dahomey Israel 6.44 (-12.68 to 25.79) 9.77
Total across all 4 vials Dahomey Sweden 21.73 (3.65 to 40.6) 9.39 *
Total across all 4 vials Israel Barcelona 4.37 (-13.7 to 22.8) 9.30
Total across all 4 vials Israel Brownsville 2.11 (-16.08 to 20.45) 9.33
Total across all 4 vials Sweden Barcelona -10.91 (-28.38 to 6.3) 8.84
Total across all 4 vials Sweden Brownsville -13.17 (-30.73 to 3.75) 8.77
Total across all 4 vials Sweden Israel -15.28 (-34.35 to 3.08) 9.52
Vial 1 Brownsville Barcelona -0.67 (-6.74 to 5.44) 3.08
Vial 1 Dahomey Barcelona 2.21 (-4 to 8.61) 3.20
Vial 1 Dahomey Brownsville 2.88 (-3.39 to 9.38) 3.24
Vial 1 Dahomey Israel 0.46 (-6.07 to 7.01) 3.32
Vial 1 Dahomey Sweden 5.24 (-0.73 to 11.65) 3.14
Vial 1 Israel Barcelona 1.75 (-4.43 to 8.13) 3.18
Vial 1 Israel Brownsville 2.42 (-3.83 to 8.88) 3.22
Vial 1 Sweden Barcelona -3.02 (-8.95 to 2.65) 2.95
Vial 1 Sweden Brownsville -2.36 (-8.33 to 3.38) 2.97
Vial 1 Sweden Israel -4.78 (-11.08 to 1.15) 3.11
Vial 2 Brownsville Barcelona -0.03 (-9.77 to 9.79) 4.97
Vial 2 Dahomey Barcelona 5.06 (-5.52 to 15.97) 5.45
Vial 2 Dahomey Brownsville 5.09 (-5.25 to 15.68) 5.32
Vial 2 Dahomey Israel 3.69 (-7.51 to 15.07) 5.74
Vial 2 Dahomey Sweden 6.67 (-3.62 to 17.32) 5.31
Vial 2 Israel Barcelona 1.37 (-9.22 to 12.13) 5.42
Vial 2 Israel Brownsville 1.4 (-8.91 to 11.79) 5.26
Vial 2 Sweden Barcelona -1.6 (-11.37 to 8.08) 4.95
Vial 2 Sweden Brownsville -1.58 (-11.09 to 7.88) 4.81
Vial 2 Sweden Israel -2.98 (-13.51 to 7.29) 5.28
Vial 3 Brownsville Barcelona 0.26 (-8.79 to 9.37) 4.60
Vial 3 Dahomey Barcelona 0.95 (-8.96 to 10.97) 5.05
Vial 3 Dahomey Brownsville 0.69 (-8.68 to 10.16) 4.78
Vial 3 Dahomey Israel 3.59 (-6.78 to 14.09) 5.29
Vial 3 Dahomey Sweden 5.8 (-4.06 to 15.99) 5.09
Vial 3 Israel Barcelona -2.64 (-12.68 to 7.33) 5.07
Vial 3 Israel Brownsville -2.9 (-12.53 to 6.63) 4.86
Vial 3 Sweden Barcelona -4.85 (-14.6 to 4.65) 4.90
Vial 3 Sweden Brownsville -5.1 (-14.45 to 3.89) 4.65
Vial 3 Sweden Israel -2.2 (-12.37 to 7.76) 5.10
Vial 4 Brownsville Barcelona 2.7 (-5.87 to 11.85) 4.48
Vial 4 Dahomey Barcelona 2.59 (-6.34 to 11.98) 4.63
Vial 4 Dahomey Brownsville -0.1 (-9.53 to 9.2) 4.73
Vial 4 Dahomey Israel -1.29 (-10.81 to 8.11) 4.78
Vial 4 Dahomey Sweden 4.03 (-5.18 to 13.95) 4.85
Vial 4 Israel Barcelona 3.88 (-4.91 to 13.11) 4.55
Vial 4 Israel Brownsville 1.19 (-8.39 to 10.72) 4.83
Vial 4 Sweden Barcelona -1.44 (-10.63 to 7.68) 4.63
Vial 4 Sweden Brownsville -4.13 (-14.13 to 4.99) 4.82
Vial 4 Sweden Israel -5.32 (-15.45 to 4.12) 4.95


Mortality data

Only 8 deaths were observed in Experiment 1, so it is not useful to run a model to investigate mortality rate prediictors. Here, we simply present the number of females of each type that died or survived the experiment.

Table S5: Number of female flies that died or survived in Experiment 1, by Haplotype and male exposure treatment.

survival_data_expt1 %>% 
  group_by(Haplotype, Order.of.exposure) %>% 
  summarise(nDeaths = sum(censored == 0), nSurvivors = sum(censored == 1)) %>%
  save_and_display_table("tab_S5.rds")
Haplotype Order.of.exposure nDeaths nSurvivors
Barcelona First 1 23
Barcelona Second 2 21
Brownsville First 0 21
Brownsville Second 1 21
Dahomey First 1 21
Dahomey Second 2 21
Israel First 0 22
Israel Second 0 22
Sweden First 0 22
Sweden Second 1 22

Sex ratio data

Model selection table

Posterior model probabilities, comparing models of offspring sex ratio with and without the fixed effect “male mtDNA haplotype”. There was no indication that mtDNA haplotype explains variance in sex ratio.

readRDS("model_output/sex_ratio_exp1_model_selection.rds") %>% 
  mutate(`Posterior model probability` = format(round(`Posterior model probability`, 3), 3)) %>%
  pander(split.cell = 40, split.table = Inf)
Fixed effects Posterior model probability
No fixed effects 0.982
Male mtDNA 0.018

Results of the sex ratio model

Table S6: Results of the model of offspring sex ratio in Experiment 1, which contains the fixed factor Haplotype (i.e. the mitochondrial strain of the males) only. The model is a Bayesian generalized linear mixed model, with female ID and experimental block as crossed random factors and binomial errors

sex_ratio_exp1 <- readRDS("model_output/sex_ratio_exp1.rds") 
rownames(sex_ratio_exp1)[grep("sd", rownames(sex_ratio_exp1))] <- c("sd(Block)", "sd(Female)")
sex_ratio_exp1 %>% save_and_display_table("tab_S6.rds")
  Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat
Intercept 0.09 0.04 0.02 0.16 58229 1 *
HaplotypeBrownsville -0.07 0.05 -0.17 0.03 70149 1
HaplotypeDahomey -0.15 0.05 -0.24 -0.06 69552 1 *
HaplotypeIsrael -0.07 0.05 -0.16 0.02 68226 1
HaplotypeSweden -0.09 0.05 -0.18 0.00 70124 1
sd(Block) 0.02 0.02 0.00 0.08 32785 1 *
sd(Female) 0.06 0.03 0.00 0.11 17340 1 *

Experiment 2: Direct effect of mtDNA on female productivity

Statistical results

Model selection table

Table 2: The posterior probabilities for fifteen models with different fixed effects, for Experiment 2. No particular model was definitively better than the others, though we can be >90% sure that the top model contains no interaction terms. The probability that the predictor ‘Haplotype’ appears in the top model in this set was 0.002, while the corresponding figure for ‘Order of exposure’ was 0.002. To reduce the number of models that needed to be compared, all of the models compared contained the predictor ‘Vial’ since its effect on the response variable was obvious.

exp2_model_ranks %>%
  pander(split.cell = 40, split.table = Inf)
Fixed effects Posterior model probability
Null 0.828
Order.of.exposure 0.171
Haplotype * Order.of.exposure 0.002
Haplotype + Order.of.exposure 0.000
Haplotype 0.000

Parameter estimates from the full model

Table S7: Results of the ‘full model’ of Experiment 2, which contains the fixed factors Haplotype (i.e. the mitochondrial strain of the males), Order of exposure (i.e. whether the female first encountered males in her first or second vial), Vial (i.e. in which of the four vials per female was the measurement taken), and all possible interactions. The model is a univariate Bayesian generalized linear mixed model, with experimental block as a random factor and zero-inflated negative binomial errors. The Bayesian \(R^2\) was 0.28 (95% CIs = 0.17-0.39).

get_fixed_effects_with_p_values(experiment2_full_model[[1]]) %>%
  rbind(get_random_effects(experiment2_full_model[[1]])) %>% 
  mutate(` ` = ifelse(p < 0.05, "*", " "),
         ` ` = replace(` `, is.na(` `), " "),
         p = format(round(p, 3), nsmall = 3)) %>%
  save_and_display_table("tab_S7.rds")
Parameter Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat p
Vial1_Intercept 3.38 0.14 3.10 3.66 65975 1.00 0.000 *
Vial2_Intercept 2.90 0.16 2.59 3.21 71668 1.00 0.324
Vial3_Intercept 2.89 0.18 2.54 3.24 83891 1.00 0.362
Vial4_Intercept 3.18 0.24 2.71 3.66 77273 1.00 0.265
Vial1_HaplotypeBrownsville 0.06 0.14 -0.22 0.34 110150 1.00 0.246
Vial1_HaplotypeDahomey 0.05 0.13 -0.21 0.31 106360 1.00 0.051
Vial1_HaplotypeIsrael 0.08 0.13 -0.18 0.35 108298 1.00 0.313
Vial1_HaplotypeSweden 0.09 0.13 -0.17 0.35 110357 1.00 0.044 *
Vial1_Order.of.exposureFirst 0.22 0.13 -0.04 0.47 78049 1.00 0.251
Vial1_HaplotypeBrownsville:Order.of.exposureFirst -0.09 0.19 -0.47 0.28 102442 1.00 0.088
Vial1_HaplotypeDahomey:Order.of.exposureFirst -0.32 0.19 -0.68 0.05 102439 1.00 0.000 *
Vial1_HaplotypeIsrael:Order.of.exposureFirst -0.12 0.19 -0.49 0.24 101657 1.00 0.055
Vial1_HaplotypeSweden:Order.of.exposureFirst -0.25 0.19 -0.62 0.11 101751 1.00 0.079
Vial2_HaplotypeBrownsville 0.24 0.15 -0.05 0.53 107192 1.00 0.016 *
Vial2_HaplotypeDahomey 0.20 0.14 -0.08 0.47 104232 1.00 0.000 *
Vial2_HaplotypeIsrael 0.30 0.14 0.03 0.58 102248 1.00 0.004 *
Vial2_HaplotypeSweden 0.52 0.14 0.24 0.79 103345 1.00 0.209
Vial2_Order.of.exposureFirst 0.38 0.14 0.10 0.66 75421 1.00 0.007 *
Vial2_HaplotypeBrownsville:Order.of.exposureFirst -0.16 0.20 -0.56 0.23 98117 1.00 0.144
Vial2_HaplotypeDahomey:Order.of.exposureFirst -0.50 0.20 -0.90 -0.10 100777 1.00 0.019 *
Vial2_HaplotypeIsrael:Order.of.exposureFirst -0.21 0.20 -0.60 0.18 2183 1.01 0.000 *
Vial2_HaplotypeSweden:Order.of.exposureFirst -0.40 0.19 -0.78 -0.02 95593 1.00 0.004 *
Vial3_HaplotypeBrownsville 0.57 0.21 0.16 0.99 109742 1.00 0.071
Vial3_HaplotypeDahomey 0.30 0.21 -0.10 0.70 109463 1.00 0.002 *
Vial3_HaplotypeIsrael 0.60 0.20 0.20 0.99 108943 1.00 0.005 *
Vial3_HaplotypeSweden 0.52 0.20 0.12 0.91 107753 1.00 0.001 *
Vial3_Order.of.exposureFirst 0.63 0.20 0.23 1.02 79357 1.00 0.013 *
Vial3_HaplotypeBrownsville:Order.of.exposureFirst -0.64 0.29 -1.20 -0.08 102211 1.00 0.079
Vial3_HaplotypeDahomey:Order.of.exposureFirst -0.41 0.29 -0.98 0.17 105065 1.00 0.009 *
Vial3_HaplotypeIsrael:Order.of.exposureFirst -0.65 0.28 -1.20 -0.11 70348 1.00 0.058
Vial3_HaplotypeSweden:Order.of.exposureFirst -0.43 0.27 -0.97 0.11 101428 1.00 0.000 *
Vial4_HaplotypeBrownsville 0.20 0.26 -0.31 0.71 99166 1.00 0.216
Vial4_HaplotypeDahomey 0.03 0.25 -0.47 0.52 99021 1.00 0.456
Vial4_HaplotypeIsrael 0.28 0.25 -0.22 0.77 97271 1.00 0.136
Vial4_HaplotypeSweden 0.32 0.25 -0.19 0.82 98903 1.00 0.106
Vial4_Order.of.exposureFirst 0.10 0.25 -0.40 0.59 74213 1.00 0.345
Vial4_HaplotypeBrownsville:Order.of.exposureFirst -0.14 0.36 -0.84 0.56 97040 1.00 0.346
Vial4_HaplotypeDahomey:Order.of.exposureFirst 0.11 0.37 -0.61 0.84 104103 1.00 0.382
Vial4_HaplotypeIsrael:Order.of.exposureFirst -0.14 0.34 -0.81 0.53 87625 1.00 0.333
Vial4_HaplotypeSweden:Order.of.exposureFirst -0.31 0.34 -0.98 0.36 96934 1.00 0.183
sd(Vial1_Intercept) 0.25 0.11 0.11 0.51 73254 1.00 NA
sd(Vial2_Intercept) 0.29 0.12 0.14 0.60 73417 1.00 NA
sd(Vial3_Intercept) 0.24 0.13 0.07 0.56 73431 1.00 NA
sd(Vial4_Intercept) 0.35 0.19 0.11 0.81 83511 1.00 NA
cor(Vial1_Intercept,Vial2_Intercept) 0.53 0.31 -0.21 0.94 106239 1.00 NA
cor(Vial1_Intercept,Vial3_Intercept) 0.19 0.37 -0.56 0.81 136049 1.00 NA
cor(Vial2_Intercept,Vial3_Intercept) 0.36 0.34 -0.40 0.89 146608 1.00 NA
cor(Vial1_Intercept,Vial4_Intercept) 0.28 0.35 -0.48 0.85 144418 1.00 NA
cor(Vial2_Intercept,Vial4_Intercept) 0.09 0.36 -0.61 0.74 151162 1.00 NA
cor(Vial3_Intercept,Vial4_Intercept) 0.28 0.37 -0.51 0.88 136908 1.00 NA

Treatment group means

Table S8: Posterior treatment group means for Experiment 2, estimated from the full model. Each row shows the median, error, and 95% confidence limits on the posterior mean progeny production for one combination of Haplotype, vial number (i.e. the age category of the focal flies), and order of exposure treatment.

difference_tables_expt_2$posterior_treatment_means %>% 
  mutate_if(is.numeric, round, 2) %>%
  save_and_display_table("tab_S8.rds")
Haplotype Order of exposure Vial Estimate Est.Error Q2.5 Q97.5 Males in the vial
Barcelona Males in vials 2 and 4 1 29.45 4.19 22.13 38.49 No
Brownsville Males in vials 2 and 4 1 31.42 4.62 23.44 41.43 No
Dahomey Males in vials 2 and 4 1 30.83 4.26 23.34 40.00 No
Israel Males in vials 2 and 4 1 32.03 4.50 24.15 41.75 No
Sweden Males in vials 2 and 4 1 32.28 4.53 24.30 42.05 No
Barcelona Males in vials 1 and 3 1 36.52 5.02 27.71 47.28 Yes
Brownsville Males in vials 1 and 3 1 35.48 4.94 26.84 46.11 Yes
Dahomey Males in vials 1 and 3 1 27.88 3.93 20.98 36.32 Yes
Israel Males in vials 1 and 3 1 35.10 4.82 26.60 45.44 Yes
Sweden Males in vials 1 and 3 1 31.16 4.36 23.48 40.48 Yes
Barcelona Males in vials 2 and 4 2 17.54 2.85 12.65 23.65 Yes
Brownsville Males in vials 2 and 4 2 22.21 3.65 15.96 30.10 Yes
Dahomey Males in vials 2 and 4 2 21.33 3.34 15.57 28.52 Yes
Israel Males in vials 2 and 4 2 23.72 3.75 17.29 31.80 Yes
Sweden Males in vials 2 and 4 2 29.41 4.62 21.43 39.35 Yes
Barcelona Males in vials 1 and 3 2 25.54 4.09 18.55 34.38 No
Brownsville Males in vials 1 and 3 2 27.44 4.35 19.97 36.81 No
Dahomey Males in vials 1 and 3 2 18.88 3.16 13.49 25.72 No
Israel Males in vials 1 and 3 2 28.06 4.49 20.41 37.74 No
Sweden Males in vials 1 and 3 2 28.62 4.49 20.87 38.28 No
Barcelona Males in vials 2 and 4 3 16.43 3.02 11.39 23.17 No
Brownsville Males in vials 2 and 4 3 29.09 5.46 19.99 41.20 No
Dahomey Males in vials 2 and 4 3 22.17 4.03 15.40 31.07 No
Israel Males in vials 2 and 4 3 29.85 5.24 21.12 41.50 No
Sweden Males in vials 2 and 4 3 27.50 4.84 19.23 38.08 No
Barcelona Males in vials 1 and 3 3 30.67 5.37 21.65 42.53 Yes
Brownsville Males in vials 1 and 3 3 28.74 5.03 20.29 39.87 Yes
Dahomey Males in vials 1 and 3 3 27.50 5.35 18.65 39.44 Yes
Israel Males in vials 1 and 3 3 29.02 5.01 20.51 40.04 Yes
Sweden Males in vials 1 and 3 3 33.41 5.74 23.63 46.02 Yes
Barcelona Males in vials 2 and 4 4 19.17 4.86 11.51 30.21 Yes
Brownsville Males in vials 2 and 4 4 23.40 5.61 14.54 36.14 Yes
Dahomey Males in vials 2 and 4 4 19.62 4.62 12.24 30.03 Yes
Israel Males in vials 2 and 4 4 25.13 5.88 15.80 38.53 Yes
Sweden Males in vials 2 and 4 4 26.18 6.12 16.22 39.90 Yes
Barcelona Males in vials 1 and 3 4 21.08 4.94 13.21 32.26 No
Brownsville Males in vials 1 and 3 4 22.50 5.56 13.83 35.18 No
Dahomey Males in vials 1 and 3 4 24.42 6.65 14.24 39.87 No
Israel Males in vials 1 and 3 4 23.99 5.48 15.13 36.29 No
Sweden Males in vials 1 and 3 4 21.27 5.01 13.27 32.55 No
Barcelona Males in vials 2 and 4 Total across all 4 vials 82.60 8.66 67.17 101.19 No
Barcelona Males in vials 1 and 3 Total across all 4 vials 113.81 11.21 93.72 137.84 No
Brownsville Males in vials 2 and 4 Total across all 4 vials 106.11 11.02 86.55 129.60 No
Brownsville Males in vials 1 and 3 Total across all 4 vials 114.16 11.43 93.85 138.65 No
Dahomey Males in vials 2 and 4 Total across all 4 vials 93.95 9.36 77.25 113.90 No
Dahomey Males in vials 1 and 3 Total across all 4 vials 98.68 10.99 79.43 122.48 No
Israel Males in vials 2 and 4 Total across all 4 vials 110.73 11.18 90.91 134.82 No
Israel Males in vials 1 and 3 Total across all 4 vials 116.17 11.44 95.67 140.54 No
Sweden Males in vials 2 and 4 Total across all 4 vials 115.37 11.57 94.59 139.97 No
Sweden Males in vials 1 and 3 Total across all 4 vials 114.46 11.31 94.22 138.59 No

Predicted average fitness for each group

The figure shows the predicted average progeny count for each combination of predictors, as estimated from a model containing Haplotype and the Haplotype \({\times}\) Age interaction.

fig2 <- make_graph(difference_tables_expt_2, exp = 2) + 
  labs(title = "Experiment 2", 
       subtitle = "Mitochondrial strain females interacting with DGRP-324 males") 

ggsave("figures/fig2.pdf", fig2, width = 11, height = 6)
fig2


Figure 2: The average number of progeny produced in Experiment 2, for each combination of predictor variables. The coloured points show model predictions derived from the model shown in Table S1.

Quantifying differences among treatment groups

Table S9: Posterior estimates of the differences in mean offspring production for each possible pairs of female haplotypes in Experiment 2, either within a particular vial or summed across the four vials, and split by ‘Order of exposure’ treatment. Females from the Barcelona haplotype tended to have lower offspring production than some of the others, but only in the ‘Exposed second’ treatment. There was also a difference in offspring production (summed over the four vials) between Dahomey and Sweden mitoline females. Asterisks mark statistically significant differences. The numbers in parentheses are 95% credible intervals. The ‘Relative difference’ column gives the absolute difference in means divided by the mean for haplotype 1.

difference_tables_expt_2$differences_between_haplos %>%
  mutate_if(is.numeric, round, 2) %>%
  save_and_display_table("tab_S9.rds") 
Vial Order of exposure Haplotype 1 Haplotype 2 Difference in fecundity SE Relative difference Significant
Total across all 4 vials First Brownsville Barcelona 0.35 (-19.34 to 20.24) 10.05 0.07 (0 to 0.2)
Total across all 4 vials First Dahomey Barcelona -15.13 (-35.67 to 6.02) 10.58 0.17 (0.01 to 0.4)
Total across all 4 vials First Dahomey Brownsville -15.48 (-36.37 to 5.7) 10.66 0.17 (0.01 to 0.4)
Total across all 4 vials First Dahomey Israel -17.49 (-38.25 to 3.67) 10.61 0.19 (0.01 to 0.42)
Total across all 4 vials First Dahomey Sweden -15.78 (-36.36 to 5.19) 10.56 0.17 (0.01 to 0.41)
Total across all 4 vials First Israel Barcelona 2.36 (-17.14 to 22.02) 9.95 0.07 (0 to 0.19)
Total across all 4 vials First Israel Brownsville 2.01 (-17.98 to 21.85) 10.10 0.07 (0 to 0.19)
Total across all 4 vials First Sweden Barcelona 0.65 (-18.97 to 20.38) 9.98 0.07 (0 to 0.2)
Total across all 4 vials First Sweden Brownsville 0.3 (-19.54 to 20.09) 10.08 0.07 (0 to 0.2)
Total across all 4 vials First Sweden Israel -1.71 (-21.3 to 17.93) 9.97 0.07 (0 to 0.2)
Total across all 4 vials Second Brownsville Barcelona 23.52 (5.49 to 42.96) 9.51 0.22 (0.06 to 0.36) *
Total across all 4 vials Second Dahomey Barcelona 11.36 (-4.66 to 27.58) 8.17 0.12 (0.01 to 0.27)
Total across all 4 vials Second Dahomey Brownsville -12.16 (-31.36 to 5.94) 9.47 0.14 (0.01 to 0.36)
Total across all 4 vials Second Dahomey Israel -16.78 (-35.87 to 1.04) 9.35 0.19 (0.02 to 0.41)
Total across all 4 vials Second Dahomey Sweden -21.41 (-40.68 to -3.46) 9.47 0.23 (0.04 to 0.46) *
Total across all 4 vials Second Israel Barcelona 28.13 (10.47 to 47.4) 9.37 0.25 (0.1 to 0.38) *
Total across all 4 vials Second Israel Brownsville 4.62 (-15.59 to 24.87) 10.24 0.08 (0 to 0.21)
Total across all 4 vials Second Sweden Barcelona 32.77 (14.76 to 52.33) 9.56 0.28 (0.14 to 0.4) *
Total across all 4 vials Second Sweden Brownsville 9.25 (-11.15 to 29.89) 10.40 0.1 (0 to 0.24)
Total across all 4 vials Second Sweden Israel 4.64 (-15.37 to 24.75) 10.21 0.08 (0 to 0.2)
Vial 1 First Brownsville Barcelona -1.03 (-10.31 to 8.09) 4.66 0.11 (0 to 0.33)
Vial 1 First Dahomey Barcelona -8.64 (-17.57 to -0.42) 4.34 0.32 (0.03 to 0.69) *
Vial 1 First Dahomey Brownsville -7.6 (-16.47 to 0.58) 4.32 0.29 (0.02 to 0.65)
Vial 1 First Dahomey Israel -7.22 (-15.83 to 0.81) 4.21 0.27 (0.02 to 0.63)
Vial 1 First Dahomey Sweden -3.27 (-11.34 to 4.48) 3.99 0.16 (0.01 to 0.45)
Vial 1 First Israel Barcelona -1.42 (-10.53 to 7.5) 4.57 0.11 (0 to 0.33)
Vial 1 First Israel Brownsville -0.39 (-9.45 to 8.62) 4.57 0.1 (0 to 0.31)
Vial 1 First Sweden Barcelona -5.36 (-14.38 to 3.24) 4.46 0.2 (0.01 to 0.51)
Vial 1 First Sweden Brownsville -4.33 (-13.26 to 4.29) 4.44 0.17 (0.01 to 0.47)
Vial 1 First Sweden Israel -3.94 (-12.68 to 4.46) 4.33 0.16 (0.01 to 0.45)
Vial 1 Second Brownsville Barcelona 1.97 (-6.58 to 10.81) 4.38 0.12 (0 to 0.31)
Vial 1 Second Dahomey Barcelona 1.38 (-6.6 to 9.33) 4.03 0.11 (0 to 0.29)
Vial 1 Second Dahomey Brownsville -0.59 (-9.3 to 7.82) 4.33 0.11 (0 to 0.34)
Vial 1 Second Dahomey Israel -1.2 (-9.54 to 6.9) 4.16 0.11 (0 to 0.34)
Vial 1 Second Dahomey Sweden -1.45 (-9.73 to 6.66) 4.16 0.12 (0 to 0.35)
Vial 1 Second Israel Barcelona 2.58 (-5.63 to 10.97) 4.20 0.12 (0.01 to 0.3)
Vial 1 Second Israel Brownsville 0.61 (-8.29 to 9.4) 4.47 0.11 (0 to 0.31)
Vial 1 Second Sweden Barcelona 2.82 (-5.35 to 11.22) 4.20 0.12 (0.01 to 0.31)
Vial 1 Second Sweden Brownsville 0.86 (-8.1 to 9.73) 4.51 0.11 (0 to 0.31)
Vial 1 Second Sweden Israel 0.25 (-8.31 to 8.79) 4.31 0.11 (0 to 0.3)
Vial 2 First Brownsville Barcelona 1.9 (-5.34 to 9.37) 3.72 0.12 (0.01 to 0.3)
Vial 2 First Dahomey Barcelona -6.66 (-13.74 to -0.26) 3.42 0.37 (0.04 to 0.81) *
Vial 2 First Dahomey Brownsville -8.56 (-16.03 to -1.97) 3.57 0.47 (0.09 to 0.94) *
Vial 2 First Dahomey Israel -9.18 (-16.87 to -2.47) 3.67 0.5 (0.12 to 0.99) *
Vial 2 First Dahomey Sweden -9.74 (-17.32 to -3.07) 3.63 0.53 (0.14 to 1.01) *
Vial 2 First Israel Barcelona 2.52 (-4.85 to 10.18) 3.81 0.13 (0.01 to 0.32)
Vial 2 First Israel Brownsville 0.62 (-7.01 to 8.34) 3.89 0.11 (0 to 0.31)
Vial 2 First Sweden Barcelona 3.08 (-4.22 to 10.7) 3.76 0.13 (0.01 to 0.32)
Vial 2 First Sweden Brownsville 1.18 (-6.36 to 8.79) 3.82 0.11 (0 to 0.29)
Vial 2 First Sweden Israel 0.57 (-7.17 to 8.32) 3.92 0.11 (0 to 0.3)
Vial 2 Second Brownsville Barcelona 4.67 (-1.06 to 11.05) 3.07 0.21 (0.02 to 0.41)
Vial 2 Second Dahomey Barcelona 3.79 (-1.46 to 9.46) 2.77 0.18 (0.01 to 0.37)
Vial 2 Second Dahomey Brownsville -0.88 (-7.26 to 5.16) 3.14 0.12 (0 to 0.38)
Vial 2 Second Dahomey Israel -2.4 (-8.64 to 3.52) 3.08 0.15 (0.01 to 0.45)
Vial 2 Second Dahomey Sweden -8.08 (-15.62 to -1.47) 3.60 0.39 (0.07 to 0.79) *
Vial 2 Second Israel Barcelona 6.19 (0.52 to 12.49) 3.04 0.26 (0.04 to 0.44) *
Vial 2 Second Israel Brownsville 1.52 (-5.06 to 8.12) 3.33 0.12 (0.01 to 0.31)
Vial 2 Second Sweden Barcelona 11.87 (5.33 to 19.63) 3.66 0.4 (0.22 to 0.55) *
Vial 2 Second Sweden Brownsville 7.2 (0.07 to 15.03) 3.79 0.24 (0.03 to 0.43) *
Vial 2 Second Sweden Israel 5.68 (-1.3 to 13.3) 3.71 0.19 (0.02 to 0.38)
Vial 3 First Brownsville Barcelona -1.94 (-13.55 to 9.38) 5.80 0.17 (0.01 to 0.55)
Vial 3 First Dahomey Barcelona -3.17 (-15.35 to 9.1) 6.16 0.21 (0.01 to 0.68)
Vial 3 First Dahomey Brownsville -1.23 (-12.82 to 10.73) 5.95 0.18 (0.01 to 0.57)
Vial 3 First Dahomey Israel -1.52 (-13.01 to 10.5) 5.92 0.18 (0.01 to 0.58)
Vial 3 First Dahomey Sweden -5.91 (-18.53 to 6.55) 6.31 0.28 (0.01 to 0.82)
Vial 3 First Israel Barcelona -1.65 (-13.35 to 9.66) 5.80 0.17 (0.01 to 0.54)
Vial 3 First Israel Brownsville 0.29 (-10.85 to 11.34) 5.59 0.15 (0.01 to 0.44)
Vial 3 First Sweden Barcelona 2.74 (-9.3 to 15.11) 6.16 0.15 (0.01 to 0.4)
Vial 3 First Sweden Brownsville 4.67 (-6.89 to 16.86) 5.99 0.17 (0.01 to 0.42)
Vial 3 First Sweden Israel 4.39 (-7.14 to 16.56) 5.97 0.17 (0.01 to 0.41)
Vial 3 Second Brownsville Barcelona 12.66 (3.34 to 24.15) 5.30 0.42 (0.15 to 0.63) *
Vial 3 Second Dahomey Barcelona 5.74 (-1.95 to 14.35) 4.12 0.26 (0.02 to 0.51)
Vial 3 Second Dahomey Brownsville -6.92 (-18.61 to 3.4) 5.57 0.36 (0.02 to 0.97)
Vial 3 Second Dahomey Israel -7.68 (-18.77 to 2.42) 5.36 0.39 (0.02 to 0.99)
Vial 3 Second Dahomey Sweden -5.33 (-15.73 to 4.43) 5.07 0.29 (0.01 to 0.83)
Vial 3 Second Israel Barcelona 13.41 (4.43 to 24.23) 5.03 0.44 (0.19 to 0.63) *
Vial 3 Second Israel Brownsville 0.76 (-11.53 to 12.69) 6.11 0.16 (0.01 to 0.46)
Vial 3 Second Sweden Barcelona 11.07 (2.55 to 21.11) 4.71 0.39 (0.12 to 0.6) *
Vial 3 Second Sweden Brownsville -1.59 (-13.65 to 9.88) 5.92 0.18 (0.01 to 0.58)
Vial 3 Second Sweden Israel -2.35 (-13.8 to 8.8) 5.68 0.18 (0.01 to 0.59)
Vial 4 First Brownsville Barcelona 1.42 (-9.44 to 12.97) 5.60 0.19 (0.01 to 0.54)
Vial 4 First Dahomey Barcelona 3.34 (-8.52 to 17.42) 6.53 0.22 (0.01 to 0.55)
Vial 4 First Dahomey Brownsville 1.92 (-10.91 to 16.23) 6.81 0.22 (0.01 to 0.6)
Vial 4 First Dahomey Israel 0.42 (-11.99 to 14.64) 6.67 0.21 (0.01 to 0.66)
Vial 4 First Dahomey Sweden 3.14 (-8.63 to 17.11) 6.48 0.21 (0.01 to 0.54)
Vial 4 First Israel Barcelona 2.91 (-7.58 to 13.95) 5.39 0.19 (0.01 to 0.48)
Vial 4 First Israel Brownsville 1.49 (-10.2 to 12.92) 5.80 0.19 (0.01 to 0.53)
Vial 4 First Sweden Barcelona 0.19 (-10.15 to 10.59) 5.19 0.19 (0.01 to 0.58)
Vial 4 First Sweden Brownsville -1.23 (-12.74 to 9.65) 5.60 0.22 (0.01 to 0.71)
Vial 4 First Sweden Israel -2.72 (-13.66 to 7.76) 5.36 0.24 (0.01 to 0.77)
Vial 4 Second Brownsville Barcelona 4.22 (-6.77 to 16.03) 5.72 0.23 (0.01 to 0.53)
Vial 4 Second Dahomey Barcelona 0.45 (-9.92 to 10.39) 5.07 0.2 (0.01 to 0.6)
Vial 4 Second Dahomey Brownsville -3.77 (-15.17 to 6.52) 5.45 0.29 (0.01 to 0.92)
Vial 4 Second Dahomey Israel -5.5 (-17.28 to 4.89) 5.58 0.35 (0.01 to 1.04)
Vial 4 Second Dahomey Sweden -6.56 (-18.82 to 4) 5.74 0.4 (0.02 to 1.13)
Vial 4 Second Israel Barcelona 5.96 (-5.06 to 18.02) 5.81 0.26 (0.01 to 0.54)
Vial 4 Second Israel Brownsville 1.73 (-10.1 to 13.86) 5.99 0.19 (0.01 to 0.51)
Vial 4 Second Sweden Barcelona 7.01 (-4.33 to 19.66) 6.02 0.28 (0.02 to 0.56)
Vial 4 Second Sweden Brownsville 2.78 (-9.28 to 15.45) 6.20 0.2 (0.01 to 0.5)
Vial 4 Second Sweden Israel 1.05 (-11.31 to 13.78) 6.28 0.19 (0.01 to 0.54)


Table S10: Average difference in the effect of the ‘exposed first’ and ‘exposed second’ treatments for each pair of female haplotypes in Experiment 2, split by vial or summed over all 4 vials. For example, a difference of 10 means that the effect of the ‘exposed first’ treatment was more positive by 10 progeny in one haplotype than the other. The offspring production of Dahomey females was significantly more sensitive to the order of exposure treatment than all four of the other haplotypes, in one or more of the vials tested. The numbers in parentheses are 95% credible intervals, and the the ‘Relative difference’ column was calculated as in Table S3.

difference_tables_expt_2$haplo_by_exposure_effects %>%
  select(-`Relative difference`) %>%
  mutate_if(is.numeric, round, 2) %>%
  save_and_display_table("tab_S10.rds")
Vial Haplotype 1 Haplotype 2 Difference in effect of exposure order SE Significant
Total across all 4 vials Brownsville Barcelona -23.17 (-50.71 to 3.56) 13.80
Total across all 4 vials Dahomey Barcelona -26.49 (-52.81 to -0.07) 13.42 *
Total across all 4 vials Dahomey Brownsville -3.32 (-30.75 to 24.95) 14.18
Total across all 4 vials Dahomey Israel -0.71 (-27.97 to 27.31) 14.07
Total across all 4 vials Dahomey Sweden 5.63 (-21.27 to 33.76) 14.01
Total across all 4 vials Israel Barcelona -25.78 (-53.16 to 0.49) 13.59
Total across all 4 vials Israel Brownsville -2.61 (-30.94 to 25.64) 14.41
Total across all 4 vials Sweden Barcelona -32.12 (-59.47 to -6.04) 13.63 *
Total across all 4 vials Sweden Brownsville -8.95 (-37.38 to 19.31) 14.39
Total across all 4 vials Sweden Israel -6.34 (-34.42 to 21.7) 14.26
Vial 1 Brownsville Barcelona -3 (-15.85 to 9.49) 6.41
Vial 1 Dahomey Barcelona -10.01 (-22.05 to 1.34) 5.95
Vial 1 Dahomey Brownsville -7.02 (-19.23 to 4.87) 6.11
Vial 1 Dahomey Israel -6.02 (-17.93 to 5.45) 5.91
Vial 1 Dahomey Sweden -1.83 (-13.21 to 9.41) 5.74
Vial 1 Israel Barcelona -4 (-16.37 to 8.14) 6.22
Vial 1 Israel Brownsville -1 (-13.61 to 11.67) 6.40
Vial 1 Sweden Barcelona -8.19 (-20.57 to 3.63) 6.14
Vial 1 Sweden Brownsville -5.19 (-17.72 to 7.19) 6.32
Vial 1 Sweden Israel -4.19 (-16.44 to 7.71) 6.11
Vial 2 Brownsville Barcelona -2.77 (-12.44 to 6.58) 4.80
Vial 2 Dahomey Barcelona -10.45 (-19.73 to -2.11) 4.47 *
Vial 2 Dahomey Brownsville -7.68 (-17.36 to 1.32) 4.73
Vial 2 Dahomey Israel -6.78 (-16.39 to 2.16) 4.71
Vial 2 Dahomey Sweden -1.66 (-11.28 to 7.97) 4.86
Vial 2 Israel Barcelona -3.67 (-13.37 to 5.62) 4.81
Vial 2 Israel Brownsville -0.9 (-11.01 to 9.17) 5.11
Vial 2 Sweden Barcelona -8.79 (-19.28 to 0.83) 5.11
Vial 2 Sweden Brownsville -6.02 (-16.83 to 4.22) 5.34
Vial 2 Sweden Israel -5.12 (-15.91 to 5.2) 5.35
Vial 3 Brownsville Barcelona -14.6 (-30.94 to 0.11) 7.90
Vial 3 Dahomey Barcelona -8.91 (-23.76 to 5.59) 7.43
Vial 3 Dahomey Brownsville 5.69 (-9.95 to 22.29) 8.14
Vial 3 Dahomey Israel 6.16 (-9.07 to 22.38) 7.94
Vial 3 Dahomey Sweden -0.57 (-16.37 to 15.53) 8.05
Vial 3 Israel Barcelona -15.07 (-30.98 to -0.68) 7.68 *
Vial 3 Israel Brownsville -0.47 (-16.78 to 15.98) 8.28
Vial 3 Sweden Barcelona -8.33 (-23.9 to 6.52) 7.68
Vial 3 Sweden Brownsville 6.26 (-9.86 to 23.24) 8.39
Vial 3 Sweden Israel 6.73 (-9.19 to 23.42) 8.23
Vial 4 Brownsville Barcelona -2.8 (-18.68 to 12.93) 7.93
Vial 4 Dahomey Barcelona 2.88 (-12.61 to 20.18) 8.26
Vial 4 Dahomey Brownsville 5.69 (-10.79 to 23.94) 8.74
Vial 4 Dahomey Israel 5.93 (-10.44 to 24.53) 8.80
Vial 4 Dahomey Sweden 9.7 (-6.24 to 28.25) 8.72
Vial 4 Israel Barcelona -3.04 (-18.94 to 12.43) 7.85
Vial 4 Israel Brownsville -0.24 (-17.11 to 16.36) 8.39
Vial 4 Sweden Barcelona -6.81 (-22.91 to 8.1) 7.80
Vial 4 Sweden Brownsville -4.01 (-20.96 to 12) 8.28
Vial 4 Sweden Israel -3.77 (-20.53 to 12.42) 8.28

Mortality data

34 deaths were observed in Experiment 2, and so we also fit a survival model to test if the death rate differs between haplotypes or treatments. There was little evidence for an effect of haplotype, the Order of exposure treatment, or their interaction.

Number of deaths

Table S11: Number of female flies that died or survived in Experiment 2, by Haplotype and male exposure treatment.

survival_data_expt2 %>% 
  group_by(Haplotype, Order.of.exposure) %>% 
  summarise(nDeaths = sum(censored == 0), nSurvivors = sum(censored == 1)) %>%
  save_and_display_table("tab_S11.rds")
Haplotype Order.of.exposure nDeaths nSurvivors
Barcelona First 4 17
Barcelona Second 5 16
Brownsville First 2 17
Brownsville Second 2 14
Dahomey First 5 15
Dahomey Second 3 18
Israel First 4 18
Israel Second 4 17
Sweden First 3 17
Sweden Second 2 17

Model of mortality in Experiment 2

if(!file.exists("model_output/survival_model_expt2.rds")){
  survival_model_expt2 <- brm(Age_at_death | cens(censored) ~ Haplotype * Order.of.exposure + (1 | Block),
                              data = survival_data_expt2 %>% mutate(Age_at_death = as.numeric(Vial)), 
                              family = weibull, inits = "0",
                              cores = 4, chains = 4, iter = 4000,
                              control = list(adapt_delta = 0.999, max_treedepth = 15),
                              seed = 1)
  saveRDS(survival_model_expt2, file = "model_output/survival_model_expt2.rds")
} else survival_model_expt2 <- readRDS("model_output/survival_model_expt2.rds")

Table S12: Results of a Weibull generalized linear mixed model with Haplotype and Order.of.exposure as fixed effects, block as a random effect. The response variable is age at death (expressed as Vial 1, 2, 3 or 4), with right-censoring for flies that survived the 12-day experiment. The death rates of females in Experiment 2 were not significantly affected by their mtDNA haplotype, and did not differ between flies exposed to males in the first or second vial.

data.frame(summary(survival_model_expt2)$fixed) %>%
  rbind(data.frame(do.call("rbind", summary(survival_model_expt2)$random))) %>% 
  add_significance_stars() %>%
  save_and_display_table("tab_S12.rds")
  Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat
Intercept 1.88 0.24 1.50 2.45 2172 1 *
HaplotypeBrownsville 0.27 0.35 -0.37 1.05 2914 1
HaplotypeDahomey -0.15 0.27 -0.71 0.37 2682 1
HaplotypeIsrael 0.00 0.28 -0.57 0.56 2679 1
HaplotypeSweden 0.12 0.30 -0.47 0.75 3047 1
Order.of.exposureSecond -0.13 0.26 -0.68 0.36 2294 1
HaplotypeBrownsville:Order.of.exposureSecond 0.08 0.49 -0.88 1.10 3215 1
HaplotypeDahomey:Order.of.exposureSecond 0.36 0.40 -0.39 1.20 2820 1
HaplotypeIsrael:Order.of.exposureSecond 0.11 0.39 -0.67 0.88 2689 1
HaplotypeSweden:Order.of.exposureSecond 0.27 0.46 -0.59 1.24 3025 1
sd(Intercept) 0.10 0.10 0.00 0.35 2874 1 *

Sex ratio data

Model selection table

Posterior model probabilities, comparing models of offspring sex ratio with and without the fixed effect “female mtDNA haplotype”. There was no indication that mtDNA haplotype explains variance in sex ratio.

readRDS("model_output/sex_ratio_exp2_model_selection.rds") %>%
  mutate(`Posterior model probability` = format(round(`Posterior model probability`, 3), 3)) %>%
  mutate(`Fixed effects` = replace(`Fixed effects`, `Fixed effects` ==  "Male mtDNA", "Female mtDNA")) %>%
  pander(split.cell = 40, split.table = Inf)
Fixed effects Posterior model probability
No fixed effects 0.999
Female mtDNA 0.001

Results of the sex ratio model

Table S13: Results of the model of offspring sex ratio in Experiment 2, which contains the fixed factor Haplotype (i.e. the mitochondrial strain of the females) only. The model is a Bayesian generalized linear mixed model, with female ID and experimental block as crossed random factors and binomial errors.

sex_ratio_exp2 <- readRDS("model_output/sex_ratio_exp2.rds") 
rownames(sex_ratio_exp2)[grep("sd", rownames(sex_ratio_exp2))] <- c("sd(Block)", "sd(Female)")
sex_ratio_exp2 %>% save_and_display_table("tab_S13.rds")
  Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat
Intercept 0.09 0.04 0.02 0.16 58229 1 *
HaplotypeBrownsville -0.07 0.05 -0.17 0.03 70149 1
HaplotypeDahomey -0.15 0.05 -0.24 -0.06 69552 1 *
HaplotypeIsrael -0.07 0.05 -0.16 0.02 68226 1
HaplotypeSweden -0.09 0.05 -0.18 0.00 70124 1
sd(Block) 0.02 0.02 0.00 0.08 32785 1 *
sd(Female) 0.06 0.03 0.00 0.11 17340 1 *

Synthesising both experiments in Figure 3

Make the top part of Figure 3

The top part of Figure 3 shows the posterior estimates of the mean number of progeny produced for each mtDNA haplotype, summed over all 4 vials, and averaged over the ‘Exposed first’ and ‘Exposed second’ treatments. It aims to show the average fecundity of A) females living with males from each mtDNA haplotype (left panel), and B) females that carry each mtDNA (right panel).

# Get the posterior for panel A
post1 <- experiment1_full_model$posterior_by_vial %>%
  group_by(Haplotype, Vial, sample) %>%
  summarise(n_offspring = mean(value)) %>% ungroup() %>%
  group_by(Haplotype, sample) %>%
  summarise(n_offspring = sum(n_offspring)) %>% ungroup() %>% 
  mutate(facet = "Experiment 1: indirect effect of male mtDNA")

# Get the posterior for panel B
post2 <- experiment2_full_model$posterior_by_vial %>%
  group_by(Haplotype, Vial, sample) %>%
  summarise(n_offspring = mean(value)) %>% ungroup() %>%
  group_by(Haplotype, sample) %>%
  summarise(n_offspring = sum(n_offspring)) %>% ungroup() %>% 
  mutate(facet = "Experiment 2: direct effect of female mtDNA")

fig3 <- bind_rows(post1, post2) %>%
  ggplot(aes(Haplotype, n_offspring, fill = Haplotype)) + 
  geom_eye(.width = c(0.50, 0.95)) + 
  scale_fill_brewer(palette = "Pastel1") + 
  facet_wrap(~ facet) + 
  theme_bw() + 
  coord_cartesian(ylim = c(60, 160)) +
  xlab(NULL) + ylab(NULL) + 
  theme(legend.position = "none",
        strip.background = element_rect(fill = "seashell", colour = "black"), 
        panel.border = element_rect(colour = "black", fill = NA),
        panel.background= element_rect(fill = "white"),
        text = element_text(family = "Lato"),
        panel.grid.major.x = element_blank(),
        axis.text.x = element_text(angle = 45, hjust = 1)) +
  labs(title = "Mean productivity for each mtDNA haplotype",
       subtitle = "Posterior distribution (bars show the median and 50% and 95% CIs)") +
  ylab("Mean progeny produced (summed over all four vials)")

fig3 %>% ggsave(filename = "figures/fig3.pdf", width = 8.1, height = 5.2)
rm(post1); rm(post2)

fig3

Make the bottom part of Figure 3

This figure aims to show at a glance how the mtDNA haplotypes differ from one another, and to show which differences are ‘significantly different’ (defined as the 95% CIs on the posterior difference in means excluding 0).

fig4_data <- difference_tables_expt_1$differences_between_haplos %>% mutate(Experiment = "Experiment 1: indirect effect of male mtDNA") %>%
  rbind(difference_tables_expt_2$differences_between_haplos %>% mutate(Experiment = "Experiment 2: direct effect of female mtDNA")) %>%
  filter(Vial == "Total across all 4 vials") %>% 
  mutate(Haplotype1 = `Haplotype 1`,
         Haplotype2 = `Haplotype 2`,
         treat = "Males present in 1st and 3rd vial", 
         treat = replace(treat, `Order of exposure` == "Second", "Males present in 2nd and 4th vial")) 

for(i in 1:nrow(fig4_data)) fig4_data$pair[i] <- paste0(sort(c(fig4_data$Haplotype1[i], fig4_data$Haplotype2[i])), collapse = " ")

fig4_data <- fig4_data %>% group_by(pair, Experiment, treat) %>% 
  summarise(sig = Significant[1],
            `Difference in fecundity` = max(`Difference in fecundity`)) %>%
  mutate(Haplotype1 = "a", Haplotype2 = "a")

split <- strsplit(fig4_data$pair, split = " ") %>% 
  do.call("rbind", .) %>% as.data.frame(stringsAsFactors = FALSE)

for(i in 1:nrow(fig4_data)){
  if(fig4_data$treat[i] == "Males present in 1st and 3rd vial"){
    fig4_data$Haplotype1[i] <- split[i, 1]
    fig4_data$Haplotype2[i] <- split[i, 2]
  } else {
    fig4_data$Haplotype1[i] <- split[i, 2]
    fig4_data$Haplotype2[i] <- split[i, 1]
  }
}

fig4_data <- fig4_data %>%
  mutate(fill = abs(map_dbl(`Difference in fecundity`, 
                            function(x) as.numeric(strsplit(x, split = " \\(")[[1]][1]))))

fig4 <-  ggplot(fig4_data, aes(x = Haplotype1, y = Haplotype2, fill = fill))  +
  geom_tile(colour = "black", size = 0.2) + 
  geom_text(aes(label = sig), size = 6, vjust= 0.7) + 
  geom_abline(linetype = 2, colour = "grey") + 
  scale_fill_distiller(palette = "Purples", direction = 1, name = "Absolute difference\nin mean fecundity", limits = c(0, NA)) + 
  facet_wrap( ~ Experiment) + 
  scale_x_discrete(expand = c(0,0)) + 
  scale_y_discrete(expand = c(0,0)) + 
  xlab(NULL) + ylab(NULL) + 
  theme(panel.grid = element_blank(), axis.ticks = element_blank(), 
        strip.background = element_rect(fill = "seashell", colour = "black"), 
        panel.border = element_rect(colour = "black", fill = NA),
        panel.background= element_rect(fill = "white"),
        text = element_text(family = "Lato"),
        axis.text.x = element_text(angle = 45, hjust = 1)
        ) +
  labs(title = "Estimated difference in average total productivity between mtDNA haplotypes", 
       subtitle = "Upper triangle: 'Exposed first' treatment     Lower triangle: 'Exposed second' treatment") 

ggsave("figures/fig4.pdf", fig4, width = 10, height = 5.2)

fig4

Plot of offspring sex ratio in both experiments

sex_ratio_plot <- function(expt_data){
  points <- expt_data %>%
    group_by(Haplotype, Female) %>%
    summarise(n = sum(Male.offspring, na.rm = T) + sum(Female.offspring, na.rm = T),
              n_sons = sum(Male.offspring, na.rm = T),
              prop_sons = 100*n_sons/ n)
  
  means <- points %>%
    group_by(Haplotype) %>%
    summarise(n = sum(n),
              prop_sons = 100*sum(n_sons)/ n,
              lower = 100*binom.test(sum(n_sons), n)$conf.int[1],
              upper = 100*binom.test(sum(n_sons), n)$conf.int[2])
  
  points %>%
    ggplot(aes(Haplotype, prop_sons)) +
    geom_hline(yintercept = 50, linetype = 2) +
    geom_point(pch = 21, aes(size = n, fill = Haplotype), position = position_jitter(0.2), alpha = 0.6) +
    geom_errorbar(data=means, aes(ymin = lower, ymax = upper), width = 0, size = 1.5) +
    geom_point(data=means, pch = 21, size = 3, fill = "white", stroke = 2) +
    labs(y = NULL, x = NULL) +
    theme_minimal() + 
    theme(legend.position = "none")
}

fig_S1 <- grid.arrange(
  sex_ratio_plot(experiment1) + 
    labs(title = "Experiment 1", 
         subtitle = "DGRP-517 females interacting with mitochondrial strain males"),
  sex_ratio_plot(experiment2) + 
    labs(title = "Experiment 2", 
         subtitle = "Mitochondrial strain females interacting with DGRP-324 males"), 
  ncol = 2, left = "% sons among adult offspring", 
  bottom = "mtDNA haplotype"
)

fig_S1 %>% ggsave(filename = "figures/fig_S1.pdf", width = 10, height = 5)

Figure S1: Offspring sex ratio for all females in Experiments 1 (left) and 2 (right). The coloured points show the sex ratio for an individual female, with larger dots indicating a larger number of offspring. The black points show the mean sex ratio across females and its 95% confidence limits.

Tables of raw data

For completeness and for purposes of data archiving, we include the raw data in this report.

Columns represent:

Block: the block within which the female underwent experimentation.

Female: ID of individual females

Haplotype: The mtDNA haplotype of the males (in experiment 1) or females (experiment 2).

Male exposure: Was the female exposed to a high or low density (or no males in Experiment 2) of males?

Vial: Is the focal observation from the 1st, 2nd, 3rd, or 4th vial in which the female lived? This is a proxy for the age category of the flies (1: youngest, 4: oldest). Treated as a discrete variable, since there was a clearly non-linear relationship with fecundity.

Female offspring: the number of female offspring produced by the female.

Male offspring: the number of male offspring produced by the female.

Other: offspring that were unable to be sexed.

Mortality: Female deaths are coded ‘1’, and female survival ‘0’.

Order of exposure: Was this female allocated to the high male exposure treatment (coded as “First”) or the low exposure treatment (“Second”) in her first vial?

Experiment 1

Table S14: The raw data for Experiment 1; NAs indicate missing data due to the accidental release or killing of the fly. Flies that died naturally had their offspring production recorded as zero for any subsequent vials.

experiment1 %>%
  save_and_display_table("tab_S14.rds")
Block Female Haplotype Male.exposure Vial Female.offspring Male.offspring Other Total.offspring Mortality Order.of.exposure
2 1 Dahomey High 1 13 15 0 28 0 First
2 1 Dahomey Low 2 30 13 0 43 0 First
2 1 Dahomey High 3 11 10 1 22 0 First
2 1 Dahomey Low 4 5 11 0 16 0 First
2 2 Dahomey High 1 13 9 0 22 0 First
2 2 Dahomey Low 2 20 17 0 37 0 First
2 2 Dahomey High 3 8 9 2 19 0 First
2 2 Dahomey Low 4 13 11 1 25 0 First
2 3 Dahomey High 1 20 9 0 29 0 First
2 3 Dahomey Low 2 24 12 0 36 0 First
2 3 Dahomey High 3 13 12 0 25 0 First
2 3 Dahomey Low 4 5 6 0 11 0 First
2 4 Dahomey Low 1 14 8 0 22 0 Second
2 4 Dahomey High 2 17 15 0 32 0 Second
2 4 Dahomey Low 3 12 8 1 21 0 Second
2 4 Dahomey High 4 9 6 0 15 0 Second
2 5 Dahomey Low 1 6 14 0 20 0 Second
2 5 Dahomey High 2 15 14 2 31 0 Second
2 5 Dahomey Low 3 15 12 0 27 0 Second
2 5 Dahomey High 4 5 7 0 12 0 Second
2 6 Dahomey Low 1 10 4 0 14 0 Second
2 6 Dahomey High 2 12 8 1 21 0 Second
2 6 Dahomey Low 3 13 14 0 27 0 Second
2 6 Dahomey High 4 6 10 0 16 0 Second
2 7 Sweden High 1 11 10 0 21 0 First
2 7 Sweden Low 2 17 6 0 23 0 First
2 7 Sweden High 3 10 5 0 15 0 First
2 7 Sweden Low 4 6 13 0 19 0 First
2 8 Sweden High 1 3 7 0 10 0 First
2 8 Sweden Low 2 3 1 7 11 0 First
2 8 Sweden High 3 3 2 1 6 0 First
2 8 Sweden Low 4 7 4 0 11 0 First
2 9 Sweden High 1 3 13 0 16 0 First
2 9 Sweden Low 2 3 3 7 13 0 First
2 9 Sweden High 3 6 6 0 12 0 First
2 9 Sweden Low 4 7 6 0 13 0 First
2 10 Sweden Low 1 10 7 0 17 0 Second
2 10 Sweden High 2 6 8 1 15 0 Second
2 10 Sweden Low 3 9 11 1 21 0 Second
2 10 Sweden High 4 14 12 2 28 0 Second
2 11 Sweden Low 1 5 9 0 14 0 Second
2 11 Sweden High 2 15 14 0 29 0 Second
2 11 Sweden Low 3 17 15 0 32 0 Second
2 11 Sweden High 4 8 9 0 17 0 Second
2 12 Sweden Low 1 5 6 0 11 0 Second
2 12 Sweden High 2 0 1 0 1 0 Second
2 12 Sweden Low 3 0 2 0 2 0 Second
2 12 Sweden High 4 0 0 0 0 0 Second
2 13 Israel High 1 6 14 2 22 0 First
2 13 Israel Low 2 9 16 3 28 0 First
2 13 Israel High 3 NA NA NA NA NA First
2 13 Israel Low 4 NA NA NA NA NA First
2 14 Israel High 1 11 13 2 26 0 First
2 14 Israel Low 2 14 15 0 29 0 First
2 14 Israel High 3 16 13 2 31 0 First
2 14 Israel Low 4 21 18 0 39 0 First
2 15 Israel High 1 12 8 1 21 0 First
2 15 Israel Low 2 14 16 0 30 0 First
2 15 Israel High 3 13 15 0 28 0 First
2 15 Israel Low 4 12 15 0 27 0 First
2 16 Israel Low 1 4 7 0 11 0 Second
2 16 Israel High 2 9 18 0 27 0 Second
2 16 Israel Low 3 14 20 0 34 0 Second
2 16 Israel High 4 14 19 0 33 0 Second
2 17 Israel Low 1 5 4 0 9 0 Second
2 17 Israel High 2 10 11 1 22 0 Second
2 17 Israel Low 3 20 9 1 30 0 Second
2 17 Israel High 4 6 9 0 15 0 Second
2 18 Israel Low 1 3 6 0 9 0 Second
2 18 Israel High 2 10 16 0 26 0 Second
2 18 Israel Low 3 15 12 0 27 0 Second
2 18 Israel High 4 7 9 0 16 0 Second
2 19 Brownsville High 1 15 14 0 29 0 First
2 19 Brownsville Low 2 14 13 0 27 0 First
2 19 Brownsville High 3 8 7 3 18 0 First
2 19 Brownsville Low 4 5 7 2 14 0 First
2 20 Brownsville High 1 8 7 0 15 0 First
2 20 Brownsville Low 2 2 8 0 10 0 First
2 20 Brownsville High 3 5 2 5 12 0 First
2 20 Brownsville Low 4 6 3 4 13 0 First
2 21 Brownsville High 1 8 7 0 15 0 First
2 21 Brownsville Low 2 7 5 0 12 0 First
2 21 Brownsville High 3 3 2 3 8 0 First
2 21 Brownsville Low 4 2 6 1 9 0 First
2 22 Brownsville Low 1 19 12 0 31 0 Second
2 22 Brownsville High 2 8 16 0 24 0 Second
2 22 Brownsville Low 3 5 5 1 11 0 Second
2 22 Brownsville High 4 7 3 0 10 0 Second
2 23 Brownsville Low 1 13 13 0 26 0 Second
2 23 Brownsville High 2 7 8 3 18 0 Second
2 23 Brownsville Low 3 4 9 4 17 0 Second
2 23 Brownsville High 4 0 0 0 0 0 Second
2 24 Brownsville Low 1 18 16 0 34 0 Second
2 24 Brownsville High 2 5 5 4 14 0 Second
2 24 Brownsville Low 3 5 5 0 10 0 Second
2 24 Brownsville High 4 1 1 0 2 0 Second
2 25 Barcelona High 1 12 13 0 25 0 First
2 25 Barcelona Low 2 16 19 0 35 0 First
2 25 Barcelona High 3 5 11 3 19 0 First
2 25 Barcelona Low 4 3 3 4 10 0 First
2 26 Barcelona High 1 4 12 0 16 0 First
2 26 Barcelona Low 2 6 8 1 15 0 First
2 26 Barcelona High 3 6 12 1 19 0 First
2 26 Barcelona Low 4 2 2 0 4 0 First
2 27 Barcelona High 1 10 9 0 19 0 First
2 27 Barcelona Low 2 14 14 1 29 0 First
2 27 Barcelona High 3 14 18 0 32 0 First
2 27 Barcelona Low 4 10 14 0 24 0 First
2 28 Barcelona Low 1 5 5 1 11 0 Second
2 28 Barcelona High 2 3 7 4 14 0 Second
2 28 Barcelona Low 3 10 13 1 24 0 Second
2 28 Barcelona High 4 7 7 2 16 0 Second
2 29 Barcelona Low 1 17 12 0 29 0 Second
2 29 Barcelona High 2 13 11 1 25 0 Second
2 29 Barcelona Low 3 5 4 0 9 0 Second
2 29 Barcelona High 4 1 2 10 13 0 Second
2 30 Barcelona Low 1 0 0 4 4 0 Second
2 30 Barcelona High 2 11 8 0 19 0 Second
2 30 Barcelona Low 3 6 11 0 17 0 Second
2 30 Barcelona High 4 7 9 2 18 0 Second
3 31 Dahomey Low 1 7 3 4 14 0 Second
3 31 Dahomey High 2 11 4 1 16 0 Second
3 31 Dahomey Low 3 10 13 0 23 0 Second
3 31 Dahomey High 4 11 10 0 21 0 Second
3 32 Dahomey Low 1 10 9 0 19 0 Second
3 32 Dahomey High 2 13 12 0 25 0 Second
3 32 Dahomey Low 3 12 8 0 20 0 Second
3 32 Dahomey High 4 11 18 0 29 0 Second
3 33 Dahomey Low 1 13 13 1 27 0 Second
3 33 Dahomey High 2 14 9 0 23 0 Second
3 33 Dahomey Low 3 13 20 0 33 0 Second
3 33 Dahomey High 4 8 11 0 19 0 Second
3 34 Dahomey Low 1 13 14 0 27 0 Second
3 34 Dahomey High 2 12 8 0 20 0 Second
3 34 Dahomey Low 3 15 10 0 25 0 Second
3 34 Dahomey High 4 7 10 0 17 0 Second
3 35 Dahomey Low 1 16 5 1 22 0 Second
3 35 Dahomey High 2 10 11 0 21 0 Second
3 35 Dahomey Low 3 NA NA NA NA NA Second
3 35 Dahomey High 4 NA NA NA NA NA Second
3 36 Dahomey High 1 10 13 0 23 0 First
3 36 Dahomey Low 2 6 9 3 18 0 First
3 36 Dahomey High 3 9 13 2 24 0 First
3 36 Dahomey Low 4 17 11 0 28 0 First
3 37 Dahomey High 1 12 15 0 27 0 First
3 37 Dahomey Low 2 17 7 0 24 0 First
3 37 Dahomey High 3 15 13 1 29 0 First
3 37 Dahomey Low 4 8 9 1 18 0 First
3 38 Dahomey High 1 23 12 3 38 0 First
3 38 Dahomey Low 2 21 24 2 47 0 First
3 38 Dahomey High 3 23 22 1 46 0 First
3 38 Dahomey Low 4 15 11 0 26 0 First
3 39 Dahomey High 1 10 10 0 20 1 First
3 39 Dahomey Low 2 0 0 0 0 1 First
3 39 Dahomey High 3 0 0 0 0 1 First
3 39 Dahomey Low 4 0 0 0 0 1 First
3 40 Dahomey High 1 18 14 0 32 0 First
3 40 Dahomey Low 2 16 12 1 29 0 First
3 40 Dahomey High 3 14 9 0 23 0 First
3 40 Dahomey Low 4 7 5 2 14 0 First
3 41 Sweden Low 1 14 12 0 26 0 Second
3 41 Sweden High 2 13 12 0 25 0 Second
3 41 Sweden Low 3 9 18 0 27 0 Second
3 41 Sweden High 4 6 10 0 16 0 Second
3 42 Sweden Low 1 22 22 1 45 0 Second
3 42 Sweden High 2 11 19 0 30 0 Second
3 42 Sweden Low 3 16 19 0 35 0 Second
3 42 Sweden High 4 NA NA NA NA NA Second
3 43 Sweden Low 1 9 27 2 38 0 Second
3 43 Sweden High 2 18 14 0 32 0 Second
3 43 Sweden Low 3 21 17 0 38 0 Second
3 43 Sweden High 4 16 18 0 34 0 Second
3 44 Sweden Low 1 9 14 1 24 0 Second
3 44 Sweden High 2 15 14 2 31 0 Second
3 44 Sweden Low 3 13 23 0 36 0 Second
3 44 Sweden High 4 7 9 2 18 0 Second
3 45 Sweden Low 1 18 10 0 28 0 Second
3 45 Sweden High 2 11 16 0 27 0 Second
3 45 Sweden Low 3 18 21 0 39 0 Second
3 45 Sweden High 4 18 9 0 27 0 Second
3 46 Sweden High 1 16 10 0 26 0 First
3 46 Sweden Low 2 13 17 1 31 0 First
3 46 Sweden High 3 21 15 0 36 0 First
3 46 Sweden Low 4 17 14 2 33 0 First
3 47 Sweden High 1 8 8 11 27 0 First
3 47 Sweden Low 2 16 17 0 33 0 First
3 47 Sweden High 3 21 8 1 30 0 First
3 47 Sweden Low 4 13 9 1 23 0 First
3 48 Sweden High 1 23 10 0 33 0 First
3 48 Sweden Low 2 12 16 0 28 0 First
3 48 Sweden High 3 15 13 0 28 0 First
3 48 Sweden Low 4 14 13 0 27 0 First
3 49 Sweden High 1 15 15 2 32 0 First
3 49 Sweden Low 2 22 26 4 52 0 First
3 49 Sweden High 3 18 17 0 35 0 First
3 49 Sweden Low 4 25 16 0 41 0 First
3 50 Sweden High 1 5 4 5 14 0 First
3 50 Sweden Low 2 9 7 0 16 0 First
3 50 Sweden High 3 10 9 0 19 0 First
3 50 Sweden Low 4 11 8 2 21 0 First
3 51 Israel Low 1 18 23 1 42 0 Second
3 51 Israel High 2 20 13 0 33 0 Second
3 51 Israel Low 3 17 13 0 30 0 Second
3 51 Israel High 4 4 9 1 14 0 Second
3 52 Israel Low 1 26 15 0 41 0 Second
3 52 Israel High 2 19 17 0 36 0 Second
3 52 Israel Low 3 18 17 0 35 0 Second
3 52 Israel High 4 9 15 0 24 0 Second
3 53 Israel Low 1 18 16 0 34 0 Second
3 53 Israel High 2 15 14 0 29 0 Second
3 53 Israel Low 3 15 18 0 33 0 Second
3 53 Israel High 4 8 8 0 16 0 Second
3 54 Israel Low 1 15 11 0 26 0 Second
3 54 Israel High 2 15 8 1 24 0 Second
3 54 Israel Low 3 4 7 0 11 0 Second
3 54 Israel High 4 5 7 0 12 0 Second
3 55 Israel Low 1 22 16 0 38 0 Second
3 55 Israel High 2 15 25 0 40 0 Second
3 55 Israel Low 3 29 22 1 52 0 Second
3 55 Israel High 4 13 16 0 29 0 Second
3 56 Israel High 1 20 15 2 37 0 First
3 56 Israel Low 2 30 12 2 44 0 First
3 56 Israel High 3 18 15 1 34 0 First
3 56 Israel Low 4 22 22 0 44 0 First
3 57 Israel High 1 11 10 1 22 0 First
3 57 Israel Low 2 19 11 0 30 0 First
3 57 Israel High 3 12 10 1 23 0 First
3 57 Israel Low 4 11 7 0 18 0 First
3 58 Israel High 1 3 7 5 15 0 First
3 58 Israel Low 2 13 10 0 23 0 First
3 58 Israel High 3 12 7 0 19 0 First
3 58 Israel Low 4 8 7 3 18 0 First
3 59 Israel High 1 12 11 2 25 0 First
3 59 Israel Low 2 13 11 0 24 0 First
3 59 Israel High 3 7 8 0 15 0 First
3 59 Israel Low 4 12 8 0 20 0 First
3 60 Israel High 1 11 17 2 30 0 First
3 60 Israel Low 2 8 11 0 19 0 First
3 60 Israel High 3 12 12 0 24 0 First
3 60 Israel Low 4 8 10 0 18 0 First
3 61 Brownsville Low 1 16 12 0 28 0 Second
3 61 Brownsville High 2 15 15 0 30 0 Second
3 61 Brownsville Low 3 8 14 3 25 0 Second
3 61 Brownsville High 4 10 14 0 24 0 Second
3 62 Brownsville Low 1 12 14 1 27 0 Second
3 62 Brownsville High 2 15 20 1 36 0 Second
3 62 Brownsville Low 3 18 13 1 32 0 Second
3 62 Brownsville High 4 4 6 0 10 0 Second
3 63 Brownsville Low 1 10 14 3 27 0 Second
3 63 Brownsville High 2 18 9 1 28 0 Second
3 63 Brownsville Low 3 8 9 1 18 0 Second
3 63 Brownsville High 4 5 8 0 13 0 Second
3 64 Brownsville Low 1 5 1 0 6 0 Second
3 64 Brownsville High 2 0 2 0 2 1 Second
3 64 Brownsville Low 3 0 0 0 0 1 Second
3 64 Brownsville High 4 0 0 0 0 1 Second
3 65 Brownsville Low 1 12 13 2 27 0 Second
3 65 Brownsville High 2 12 12 0 24 0 Second
3 65 Brownsville Low 3 17 16 0 33 0 Second
3 65 Brownsville High 4 0 0 0 0 0 Second
3 66 Brownsville High 1 3 1 1 5 0 First
3 66 Brownsville Low 2 3 3 0 6 0 First
3 66 Brownsville High 3 3 1 0 4 0 First
3 66 Brownsville Low 4 0 0 0 0 0 First
3 67 Brownsville High 1 21 20 0 41 0 First
3 67 Brownsville Low 2 17 28 1 46 0 First
3 67 Brownsville High 3 14 16 1 31 0 First
3 67 Brownsville Low 4 14 17 0 31 0 First
3 68 Brownsville High 1 16 18 1 35 0 First
3 68 Brownsville Low 2 23 23 1 47 0 First
3 68 Brownsville High 3 17 8 0 25 0 First
3 68 Brownsville Low 4 9 12 1 22 0 First
3 69 Brownsville High 1 10 7 0 17 0 First
3 69 Brownsville Low 2 9 10 1 20 0 First
3 69 Brownsville High 3 8 15 0 23 0 First
3 69 Brownsville Low 4 16 16 0 32 0 First
3 70 Brownsville High 1 12 7 1 20 0 First
3 70 Brownsville Low 2 NA NA NA NA NA First
3 70 Brownsville High 3 NA NA NA NA NA First
3 70 Brownsville Low 4 NA NA NA NA NA First
3 71 Barcelona Low 1 3 7 1 11 1 Second
3 71 Barcelona High 2 0 0 0 0 0 Second
3 71 Barcelona Low 3 0 0 0 0 0 Second
3 71 Barcelona High 4 0 0 0 0 0 Second
3 72 Barcelona Low 1 14 17 0 31 0 Second
3 72 Barcelona High 2 14 17 0 31 0 Second
3 72 Barcelona Low 3 13 24 1 38 0 Second
3 72 Barcelona High 4 8 13 0 21 0 Second
3 73 Barcelona Low 1 5 1 5 11 0 Second
3 73 Barcelona High 2 5 4 0 9 0 Second
3 73 Barcelona Low 3 0 0 0 0 0 Second
3 73 Barcelona High 4 0 0 0 0 0 Second
3 74 Barcelona Low 1 19 15 0 34 0 Second
3 74 Barcelona High 2 12 17 1 30 0 Second
3 74 Barcelona Low 3 23 17 0 40 0 Second
3 74 Barcelona High 4 18 23 0 41 0 Second
3 75 Barcelona Low 1 25 22 0 47 0 Second
3 75 Barcelona High 2 19 14 0 33 0 Second
3 75 Barcelona Low 3 8 13 0 21 0 Second
3 75 Barcelona High 4 2 1 0 3 0 Second
3 76 Barcelona High 1 14 14 3 31 0 First
3 76 Barcelona Low 2 13 15 2 30 0 First
3 76 Barcelona High 3 12 3 4 19 0 First
3 76 Barcelona Low 4 9 9 1 19 0 First
3 77 Barcelona High 1 10 18 4 32 0 First
3 77 Barcelona Low 2 17 28 0 45 0 First
3 77 Barcelona High 3 11 13 0 24 0 First
3 77 Barcelona Low 4 14 22 0 36 0 First
3 78 Barcelona High 1 7 16 0 23 0 First
3 78 Barcelona Low 2 16 27 4 47 0 First
3 78 Barcelona High 3 14 14 0 28 0 First
3 78 Barcelona Low 4 22 21 0 43 0 First
3 79 Barcelona High 1 9 18 0 27 0 First
3 79 Barcelona Low 2 21 17 0 38 0 First
3 79 Barcelona High 3 13 16 0 29 0 First
3 79 Barcelona Low 4 23 18 1 42 0 First
3 80 Barcelona High 1 20 8 0 28 0 First
3 80 Barcelona Low 2 16 13 1 30 0 First
3 80 Barcelona High 3 9 10 1 20 0 First
3 80 Barcelona Low 4 20 14 0 34 0 First
4 81 Dahomey High 1 14 13 0 27 0 First
4 81 Dahomey Low 2 26 22 0 48 0 First
4 81 Dahomey High 3 15 11 0 26 0 First
4 82 Dahomey High 1 18 12 0 30 0 First
4 82 Dahomey Low 2 26 20 0 46 0 First
4 82 Dahomey High 3 11 17 0 28 0 First
4 83 Dahomey High 1 14 10 0 24 0 First
4 83 Dahomey Low 2 22 17 0 39 0 First
4 83 Dahomey High 3 13 12 0 25 0 First
4 84 Dahomey Low 1 4 13 1 18 0 Second
4 84 Dahomey High 2 8 4 0 12 0 Second
4 84 Dahomey Low 3 15 8 0 23 0 Second
4 85 Dahomey Low 1 13 8 1 22 0 Second
4 85 Dahomey High 2 13 10 0 23 0 Second
4 85 Dahomey Low 3 9 12 0 21 0 Second
4 86 Dahomey Low 1 21 11 0 32 0 Second
4 86 Dahomey High 2 4 10 0 14 0 Second
4 86 Dahomey Low 3 6 10 0 16 0 Second
4 87 Sweden High 1 9 4 0 13 0 First
4 87 Sweden Low 2 5 7 0 12 0 First
4 87 Sweden High 3 14 19 0 33 0 First
4 88 Sweden High 1 10 12 0 22 0 First
4 88 Sweden Low 2 6 5 0 11 0 First
4 88 Sweden High 3 7 3 0 10 0 First
4 89 Sweden High 1 11 4 0 15 0 First
4 89 Sweden Low 2 11 7 0 18 0 First
4 89 Sweden High 3 4 7 0 11 0 First
4 90 Sweden Low 1 14 11 0 25 0 Second
4 90 Sweden High 2 8 6 1 15 0 Second
4 90 Sweden Low 3 0 0 0 0 1 Second
4 91 Sweden Low 1 8 10 0 18 0 Second
4 91 Sweden High 2 17 6 0 23 0 Second
4 91 Sweden Low 3 11 10 0 21 0 Second
4 92 Sweden Low 1 37 39 0 76 0 Second
4 92 Sweden High 2 21 21 1 43 0 Second
4 92 Sweden Low 3 20 25 0 45 0 Second
4 93 Israel High 1 18 23 1 42 0 First
4 93 Israel Low 2 22 27 1 50 0 First
4 93 Israel High 3 19 16 0 35 0 First
4 94 Israel High 1 15 17 0 32 0 First
4 94 Israel Low 2 18 19 0 37 0 First
4 94 Israel High 3 7 9 0 16 0 First
4 95 Israel High 1 13 11 1 25 0 First
4 95 Israel Low 2 29 19 0 48 0 First
4 95 Israel High 3 10 17 0 27 0 First
4 96 Israel Low 1 15 19 0 34 0 Second
4 96 Israel High 2 18 13 2 33 0 Second
4 96 Israel Low 3 17 19 1 37 0 Second
4 97 Israel Low 1 6 14 2 22 0 Second
4 97 Israel High 2 9 12 0 21 0 Second
4 97 Israel Low 3 13 15 0 28 0 Second
4 98 Israel Low 1 8 8 1 17 0 Second
4 98 Israel High 2 16 7 1 24 0 Second
4 98 Israel Low 3 15 9 0 24 0 Second
4 99 Brownsville High 1 12 20 0 32 0 First
4 99 Brownsville Low 2 19 17 0 36 0 First
4 99 Brownsville High 3 13 14 0 27 0 First
4 100 Brownsville High 1 11 12 3 26 0 First
4 100 Brownsville Low 2 10 21 0 31 0 First
4 100 Brownsville High 3 27 15 0 42 0 First
4 101 Brownsville High 1 10 9 1 20 0 First
4 101 Brownsville Low 2 19 15 0 34 0 First
4 101 Brownsville High 3 15 19 0 34 0 First
4 102 Brownsville Low 1 8 17 1 26 0 Second
4 102 Brownsville High 2 7 9 0 16 0 Second
4 102 Brownsville Low 3 7 12 0 19 0 Second
4 103 Brownsville Low 1 8 12 1 21 0 Second
4 103 Brownsville High 2 8 3 2 13 0 Second
4 103 Brownsville Low 3 6 4 0 10 0 Second
4 104 Brownsville Low 1 11 7 0 18 0 Second
4 104 Brownsville High 2 10 13 0 23 0 Second
4 104 Brownsville Low 3 9 8 0 17 0 Second
4 105 Barcelona High 1 18 16 0 34 0 First
4 105 Barcelona Low 2 16 14 1 31 0 First
4 105 Barcelona High 3 6 15 1 22 0 First
4 106 Barcelona High 1 11 20 0 31 0 First
4 106 Barcelona Low 2 14 18 2 34 0 First
4 106 Barcelona High 3 16 10 2 28 0 First
4 107 Barcelona High 1 15 21 1 37 0 First
4 107 Barcelona Low 2 25 11 0 36 0 First
4 107 Barcelona High 3 11 15 0 26 0 First
4 108 Barcelona Low 1 12 7 2 21 0 Second
4 108 Barcelona High 2 14 13 0 27 0 Second
4 108 Barcelona Low 3 9 18 0 27 0 Second
4 109 Barcelona Low 1 16 21 3 40 0 Second
4 109 Barcelona High 2 16 18 0 34 0 Second
4 109 Barcelona Low 3 15 18 1 34 0 Second
4 110 Barcelona Low 1 7 7 1 15 0 Second
4 110 Barcelona High 2 14 13 2 29 0 Second
4 110 Barcelona Low 3 23 25 0 48 0 Second
5 111 Dahomey Low 1 10 11 0 21 0 Second
5 111 Dahomey High 2 10 27 1 38 0 Second
5 111 Dahomey Low 3 20 25 0 45 0 Second
5 111 Dahomey High 4 12 14 0 26 1 Second
5 112 Dahomey Low 1 3 3 0 6 0 Second
5 112 Dahomey High 2 15 16 0 31 0 Second
5 112 Dahomey Low 3 32 26 0 58 0 Second
5 112 Dahomey High 4 16 18 0 34 0 Second
5 113 Dahomey High 1 14 15 3 32 0 First
5 113 Dahomey Low 2 29 26 0 55 0 First
5 113 Dahomey High 3 20 29 0 49 0 First
5 113 Dahomey Low 4 15 17 0 32 0 First
5 114 Dahomey High 1 16 11 0 27 0 First
5 114 Dahomey Low 2 39 35 1 75 0 First
5 114 Dahomey High 3 30 27 0 57 0 First
5 114 Dahomey Low 4 26 20 0 46 0 First
5 115 Dahomey High 1 12 24 0 36 0 First
5 115 Dahomey Low 2 30 21 0 51 0 First
5 115 Dahomey High 3 16 12 0 28 0 First
5 115 Dahomey Low 4 7 9 0 16 0 First
5 116 Sweden Low 1 11 5 0 16 0 Second
5 116 Sweden High 2 6 9 0 15 0 Second
5 116 Sweden Low 3 11 7 1 19 0 Second
5 116 Sweden High 4 4 3 0 7 0 Second
5 117 Sweden Low 1 6 5 1 12 0 Second
5 117 Sweden High 2 12 13 1 26 0 Second
5 117 Sweden Low 3 24 15 0 39 0 Second
5 117 Sweden High 4 10 8 0 18 0 Second
5 118 Sweden Low 1 17 12 0 29 0 Second
5 118 Sweden High 2 9 14 2 25 0 Second
5 118 Sweden Low 3 13 14 1 28 0 Second
5 118 Sweden High 4 10 5 0 15 0 Second
5 119 Sweden High 1 13 15 2 30 0 First
5 119 Sweden Low 2 30 29 2 61 0 First
5 119 Sweden High 3 17 15 0 32 0 First
5 119 Sweden Low 4 10 15 0 25 0 First
5 120 Sweden High 1 10 11 0 21 0 First
5 120 Sweden Low 2 24 10 5 39 0 First
5 120 Sweden High 3 19 27 2 48 0 First
5 120 Sweden Low 4 13 9 0 22 0 First
5 121 Sweden High 1 9 10 0 19 0 First
5 121 Sweden Low 2 17 16 1 34 0 First
5 121 Sweden High 3 18 15 0 33 0 First
5 121 Sweden Low 4 9 17 0 26 0 First
5 122 Israel Low 1 3 9 1 13 0 Second
5 122 Israel High 2 NA NA NA NA NA Second
5 122 Israel Low 3 NA NA NA NA NA Second
5 122 Israel High 4 NA NA NA NA NA Second
5 123 Israel Low 1 13 13 0 26 0 Second
5 123 Israel High 2 18 19 0 37 0 Second
5 123 Israel Low 3 21 34 1 56 0 Second
5 123 Israel High 4 12 10 1 23 0 Second
5 124 Israel Low 1 12 12 0 24 0 Second
5 124 Israel High 2 9 17 0 26 0 Second
5 124 Israel Low 3 22 18 0 40 0 Second
5 124 Israel High 4 11 11 2 24 0 Second
5 125 Israel High 1 6 5 0 11 0 First
5 125 Israel Low 2 1 2 0 3 0 First
5 125 Israel High 3 0 3 1 4 0 First
5 125 Israel Low 4 1 1 0 2 0 First
5 126 Israel High 1 8 7 1 16 0 First
5 126 Israel Low 2 15 19 0 34 0 First
5 126 Israel High 3 20 21 2 43 0 First
5 126 Israel Low 4 18 18 0 36 0 First
5 127 Israel High 1 9 11 0 20 0 First
5 127 Israel Low 2 19 17 0 36 0 First
5 127 Israel High 3 17 20 0 37 0 First
5 127 Israel Low 4 13 19 0 32 0 First
5 128 Brownsville Low 1 2 6 0 8 0 Second
5 128 Brownsville High 2 9 7 0 16 0 Second
5 128 Brownsville Low 3 22 20 0 42 0 Second
5 128 Brownsville High 4 14 13 0 27 0 Second
5 129 Brownsville Low 1 6 9 0 15 0 Second
5 129 Brownsville High 2 17 5 1 23 0 Second
5 129 Brownsville Low 3 15 17 0 32 0 Second
5 129 Brownsville High 4 5 6 1 12 0 Second
5 130 Brownsville High 1 12 16 0 28 0 First
5 130 Brownsville Low 2 9 7 0 16 0 First
5 130 Brownsville High 3 1 0 0 1 0 First
5 130 Brownsville Low 4 0 1 0 1 0 First
5 131 Brownsville High 1 6 11 0 17 0 First
5 131 Brownsville Low 2 14 14 0 28 0 First
5 131 Brownsville High 3 16 11 0 27 0 First
5 131 Brownsville Low 4 0 0 0 0 0 First
5 132 Barcelona Low 1 11 9 0 20 0 Second
5 132 Barcelona High 2 23 13 0 36 0 Second
5 132 Barcelona Low 3 11 10 0 21 0 Second
5 132 Barcelona High 4 6 10 0 16 0 Second
5 133 Barcelona Low 1 6 7 0 13 0 Second
5 133 Barcelona High 2 8 16 1 25 0 Second
5 133 Barcelona Low 3 16 11 0 27 0 Second
5 133 Barcelona High 4 7 8 0 15 0 Second
5 134 Barcelona Low 1 11 10 0 21 0 Second
5 134 Barcelona High 2 17 22 0 39 0 Second
5 134 Barcelona Low 3 14 11 2 27 0 Second
5 134 Barcelona High 4 5 4 0 9 0 Second
5 135 Barcelona High 1 9 13 0 22 0 First
5 135 Barcelona Low 2 21 19 6 46 0 First
5 135 Barcelona High 3 18 13 0 31 0 First
5 135 Barcelona Low 4 7 2 0 9 0 First
5 136 Barcelona High 1 15 14 1 30 0 First
5 136 Barcelona Low 2 21 31 0 52 0 First
5 136 Barcelona High 3 21 21 0 42 0 First
5 136 Barcelona Low 4 6 7 3 16 0 First
5 137 Barcelona High 1 8 7 0 15 0 First
5 137 Barcelona Low 2 9 10 1 20 0 First
5 137 Barcelona High 3 10 10 0 20 0 First
5 137 Barcelona Low 4 4 5 0 9 0 First
6 138 Dahomey High 1 13 14 1 28 0 First
6 138 Dahomey Low 2 16 11 0 27 0 First
6 138 Dahomey High 3 12 25 0 37 0 First
6 138 Dahomey Low 4 19 15 0 34 0 First
6 139 Dahomey High 1 8 13 0 21 0 First
6 139 Dahomey Low 2 8 11 0 19 0 First
6 139 Dahomey High 3 14 10 0 24 0 First
6 139 Dahomey Low 4 3 10 0 13 0 First
6 140 Dahomey High 1 8 11 0 19 0 First
6 140 Dahomey Low 2 15 5 0 20 0 First
6 140 Dahomey High 3 7 9 0 16 0 First
6 140 Dahomey Low 4 9 4 0 13 0 First
6 141 Dahomey Low 1 8 10 0 18 0 Second
6 141 Dahomey High 2 11 8 0 19 0 Second
6 141 Dahomey Low 3 4 15 0 19 0 Second
6 141 Dahomey High 4 6 7 0 13 0 Second
6 142 Dahomey Low 1 6 6 0 12 0 Second
6 142 Dahomey High 2 6 8 0 14 0 Second
6 142 Dahomey Low 3 5 6 2 13 0 Second
6 142 Dahomey High 4 7 6 0 13 0 Second
6 143 Dahomey Low 1 50 39 0 89 0 Second
6 143 Dahomey High 2 31 26 0 57 0 Second
6 143 Dahomey Low 3 17 21 0 38 0 Second
6 143 Dahomey High 4 14 12 0 26 0 Second
6 144 Sweden High 1 9 15 0 24 0 First
6 144 Sweden Low 2 25 22 0 47 0 First
6 144 Sweden High 3 12 14 0 26 0 First
6 144 Sweden Low 4 11 9 2 22 0 First
6 145 Sweden High 1 6 9 0 15 0 First
6 145 Sweden Low 2 6 4 1 11 0 First
6 145 Sweden High 3 1 0 0 1 0 First
6 145 Sweden Low 4 2 0 0 2 0 First
6 146 Sweden High 1 7 12 2 21 0 First
6 146 Sweden Low 2 13 21 1 35 0 First
6 146 Sweden High 3 16 15 1 32 0 First
6 146 Sweden Low 4 16 19 0 35 0 First
6 147 Sweden Low 1 14 15 0 29 0 Second
6 147 Sweden High 2 8 13 0 21 0 Second
6 147 Sweden Low 3 20 16 0 36 0 Second
6 147 Sweden High 4 13 15 0 28 0 Second
6 148 Sweden Low 1 2 9 0 11 0 Second
6 148 Sweden High 2 9 7 0 16 0 Second
6 148 Sweden Low 3 15 24 0 39 0 Second
6 148 Sweden High 4 19 13 0 32 0 Second
6 149 Sweden Low 1 10 13 0 23 0 Second
6 149 Sweden High 2 16 17 0 33 0 Second
6 149 Sweden Low 3 19 10 0 29 0 Second
6 149 Sweden High 4 4 5 4 13 0 Second
6 150 Israel High 1 16 17 2 35 0 First
6 150 Israel Low 2 32 38 0 70 0 First
6 150 Israel High 3 17 21 0 38 0 First
6 150 Israel Low 4 10 15 0 25 0 First
6 151 Israel High 1 16 22 1 39 0 First
6 151 Israel Low 2 23 22 1 46 0 First
6 151 Israel High 3 24 11 0 35 0 First
6 151 Israel Low 4 17 13 0 30 0 First
6 152 Israel High 1 20 11 0 31 0 First
6 152 Israel Low 2 27 17 0 44 0 First
6 152 Israel High 3 16 14 0 30 0 First
6 152 Israel Low 4 9 12 0 21 0 First
6 153 Israel Low 1 14 8 0 22 0 Second
6 153 Israel High 2 11 9 0 20 0 Second
6 153 Israel Low 3 17 24 0 41 0 Second
6 153 Israel High 4 9 9 0 18 0 Second
6 154 Israel Low 1 6 14 0 20 0 Second
6 154 Israel High 2 7 16 0 23 0 Second
6 154 Israel Low 3 22 18 0 40 0 Second
6 154 Israel High 4 11 13 0 24 0 Second
6 155 Israel Low 1 11 12 0 23 0 Second
6 155 Israel High 2 12 13 0 25 0 Second
6 155 Israel Low 3 24 20 0 44 0 Second
6 155 Israel High 4 13 14 0 27 0 Second
6 156 Brownsville High 1 16 18 0 34 0 First
6 156 Brownsville Low 2 8 8 0 16 0 First
6 156 Brownsville High 3 8 6 0 14 0 First
6 156 Brownsville Low 4 6 9 0 15 0 First
6 157 Brownsville High 1 9 13 0 22 0 First
6 157 Brownsville Low 2 11 8 3 22 0 First
6 157 Brownsville High 3 8 9 0 17 0 First
6 157 Brownsville Low 4 9 9 1 19 0 First
6 158 Brownsville High 1 2 1 2 5 0 First
6 158 Brownsville Low 2 0 0 0 0 0 First
6 158 Brownsville High 3 0 0 0 0 0 First
6 158 Brownsville Low 4 0 0 0 0 0 First
6 159 Brownsville Low 1 17 8 0 25 0 Second
6 159 Brownsville High 2 8 7 0 15 0 Second
6 159 Brownsville Low 3 7 7 0 14 0 Second
6 159 Brownsville High 4 11 14 0 25 0 Second
6 160 Brownsville Low 1 14 10 0 24 0 Second
6 160 Brownsville High 2 5 6 2 13 0 Second
6 160 Brownsville Low 3 4 5 0 9 0 Second
6 160 Brownsville High 4 1 8 1 10 0 Second
6 161 Brownsville Low 1 6 8 0 14 0 Second
6 161 Brownsville High 2 4 7 2 13 0 Second
6 161 Brownsville Low 3 4 4 3 11 0 Second
6 161 Brownsville High 4 1 0 1 2 0 Second
6 162 Barcelona High 1 14 15 1 30 0 First
6 162 Barcelona Low 2 10 4 3 17 0 First
6 162 Barcelona High 3 7 10 1 18 0 First
6 162 Barcelona Low 4 7 6 0 13 0 First
6 163 Barcelona High 1 10 13 0 23 0 First
6 163 Barcelona Low 2 2 5 4 11 0 First
6 163 Barcelona High 3 3 5 4 12 0 First
6 163 Barcelona Low 4 2 1 0 3 0 First
6 164 Barcelona High 1 17 5 2 24 0 First
6 164 Barcelona Low 2 8 9 1 18 0 First
6 164 Barcelona High 3 6 2 2 10 0 First
6 164 Barcelona Low 4 1 4 6 11 0 First
6 165 Barcelona Low 1 15 10 1 26 0 Second
6 165 Barcelona High 2 2 3 2 7 1 Second
6 165 Barcelona Low 3 0 0 0 0 1 Second
6 165 Barcelona High 4 0 0 0 0 1 Second
6 166 Barcelona Low 1 5 6 4 15 0 Second
6 166 Barcelona High 2 10 18 0 28 0 Second
6 166 Barcelona Low 3 4 6 6 16 0 Second
6 166 Barcelona High 4 2 4 0 6 0 Second
6 167 Barcelona Low 1 1 2 0 3 0 Second
6 167 Barcelona High 2 8 8 0 16 0 Second
6 167 Barcelona Low 3 NA NA NA NA NA Second
6 167 Barcelona High 4 NA NA NA NA NA Second
7 168 Dahomey High 1 15 12 1 28 0 First
7 168 Dahomey Low 2 13 17 1 31 0 First
7 168 Dahomey High 3 14 16 0 30 0 First
7 168 Dahomey Low 4 14 14 3 31 0 First
7 169 Dahomey High 1 19 13 3 35 0 First
7 169 Dahomey Low 2 23 17 3 43 0 First
7 169 Dahomey High 3 12 12 0 24 0 First
7 169 Dahomey Low 4 17 14 4 35 0 First
7 170 Dahomey High 1 13 15 1 29 0 First
7 170 Dahomey Low 2 11 17 0 28 0 First
7 170 Dahomey High 3 9 11 0 20 0 First
7 170 Dahomey Low 4 14 16 0 30 0 First
7 171 Dahomey Low 1 14 13 0 27 0 Second
7 171 Dahomey High 2 3 8 0 11 0 Second
7 171 Dahomey Low 3 14 17 2 33 0 Second
7 171 Dahomey High 4 3 3 0 6 1 Second
7 172 Dahomey Low 1 15 9 0 24 0 Second
7 172 Dahomey High 2 13 12 0 25 0 Second
7 172 Dahomey Low 3 20 14 0 34 0 Second
7 172 Dahomey High 4 14 13 0 27 0 Second
7 173 Dahomey Low 1 10 11 2 23 0 Second
7 173 Dahomey High 2 11 15 0 26 0 Second
7 173 Dahomey Low 3 17 17 0 34 0 Second
7 173 Dahomey High 4 6 11 2 19 0 Second
7 174 Sweden High 1 6 16 0 22 0 First
7 174 Sweden Low 2 15 15 0 30 0 First
7 174 Sweden High 3 12 18 0 30 0 First
7 174 Sweden Low 4 11 8 3 22 0 First
7 175 Sweden High 1 11 15 0 26 0 First
7 175 Sweden Low 2 12 16 0 28 0 First
7 175 Sweden High 3 18 16 0 34 0 First
7 175 Sweden Low 4 15 15 7 37 0 First
7 176 Sweden High 1 17 13 0 30 0 First
7 176 Sweden Low 2 15 18 0 33 0 First
7 176 Sweden High 3 16 9 0 25 0 First
7 176 Sweden Low 4 2 10 2 14 0 First
7 177 Sweden Low 1 9 8 1 18 0 Second
7 177 Sweden High 2 9 8 0 17 0 Second
7 177 Sweden Low 3 9 13 0 22 0 Second
7 177 Sweden High 4 9 9 0 18 0 Second
7 178 Sweden Low 1 18 14 1 33 0 Second
7 178 Sweden High 2 14 10 0 24 0 Second
7 178 Sweden Low 3 12 14 0 26 0 Second
7 178 Sweden High 4 9 14 0 23 0 Second
7 179 Sweden Low 1 22 12 0 34 0 Second
7 179 Sweden High 2 10 6 5 21 0 Second
7 179 Sweden Low 3 11 8 0 19 0 Second
7 179 Sweden High 4 9 3 0 12 0 Second
7 180 Israel High 1 4 16 1 21 0 First
7 180 Israel Low 2 9 16 0 25 0 First
7 180 Israel High 3 12 8 0 20 0 First
7 180 Israel Low 4 7 16 0 23 0 First
7 181 Israel High 1 20 17 0 37 0 First
7 181 Israel Low 2 18 18 2 38 0 First
7 181 Israel High 3 10 16 0 26 0 First
7 181 Israel Low 4 16 7 1 24 0 First
7 182 Israel High 1 18 20 2 40 0 First
7 182 Israel Low 2 23 14 0 37 0 First
7 182 Israel High 3 19 19 0 38 0 First
7 182 Israel Low 4 14 18 0 32 0 First
7 183 Israel Low 1 4 7 1 12 0 Second
7 183 Israel High 2 9 14 0 23 0 Second
7 183 Israel Low 3 5 7 0 12 0 Second
7 183 Israel High 4 8 13 1 22 0 Second
7 184 Israel Low 1 13 27 1 41 0 Second
7 184 Israel High 2 17 16 1 34 0 Second
7 184 Israel Low 3 2 1 0 3 0 Second
7 184 Israel High 4 0 1 0 1 0 Second
7 185 Israel Low 1 8 10 3 21 0 Second
7 185 Israel High 2 11 4 0 15 0 Second
7 185 Israel Low 3 11 1 0 12 0 Second
7 185 Israel High 4 7 3 0 10 0 Second
7 186 Brownsville High 1 11 9 2 22 0 First
7 186 Brownsville Low 2 10 6 3 19 0 First
7 186 Brownsville High 3 11 11 1 23 0 First
7 186 Brownsville Low 4 14 3 2 19 0 First
7 187 Brownsville High 1 16 18 1 35 0 First
7 187 Brownsville Low 2 29 21 1 51 0 First
7 187 Brownsville High 3 9 22 0 31 0 First
7 187 Brownsville Low 4 9 15 0 24 0 First
7 188 Brownsville High 1 13 14 0 27 0 First
7 188 Brownsville Low 2 13 21 0 34 0 First
7 188 Brownsville High 3 11 18 0 29 0 First
7 188 Brownsville Low 4 11 19 2 32 0 First
7 189 Brownsville Low 1 9 11 1 21 0 Second
7 189 Brownsville High 2 14 11 0 25 0 Second
7 189 Brownsville Low 3 13 17 1 31 0 Second
7 189 Brownsville High 4 15 6 2 23 0 Second
7 190 Brownsville Low 1 16 13 0 29 0 Second
7 190 Brownsville High 2 10 25 1 36 0 Second
7 190 Brownsville Low 3 15 13 0 28 0 Second
7 190 Brownsville High 4 13 11 2 26 0 Second
7 191 Brownsville Low 1 8 7 1 16 0 Second
7 191 Brownsville High 2 10 15 0 25 0 Second
7 191 Brownsville Low 3 12 16 0 28 0 Second
7 191 Brownsville High 4 12 12 5 29 0 Second
7 192 Barcelona High 1 13 9 0 22 0 First
7 192 Barcelona Low 2 25 28 0 53 0 First
7 192 Barcelona High 3 15 23 0 38 0 First
7 192 Barcelona Low 4 10 11 4 25 0 First
7 193 Barcelona High 1 14 14 0 28 0 First
7 193 Barcelona Low 2 26 19 0 45 0 First
7 193 Barcelona High 3 16 14 0 30 0 First
7 193 Barcelona Low 4 10 10 2 22 0 First
7 194 Barcelona High 1 12 17 0 29 0 First
7 194 Barcelona Low 2 15 9 1 25 0 First
7 194 Barcelona High 3 17 15 1 33 0 First
7 194 Barcelona Low 4 10 12 0 22 0 First
7 195 Barcelona Low 1 18 23 0 41 0 Second
7 195 Barcelona High 2 12 15 1 28 0 Second
7 195 Barcelona Low 3 11 11 0 22 0 Second
7 195 Barcelona High 4 0 0 0 0 0 Second
7 196 Barcelona Low 1 13 6 2 21 0 Second
7 196 Barcelona High 2 8 12 0 20 0 Second
7 196 Barcelona Low 3 8 5 0 13 0 Second
7 196 Barcelona High 4 5 5 0 10 0 Second
8 197 Dahomey High 1 15 11 1 27 0 First
8 197 Dahomey Low 2 21 15 0 36 0 First
8 197 Dahomey High 3 17 19 0 36 0 First
8 197 Dahomey Low 4 19 12 0 31 0 First
8 198 Dahomey High 1 18 18 0 36 0 First
8 198 Dahomey Low 2 21 20 0 41 0 First
8 198 Dahomey High 3 19 16 0 35 0 First
8 198 Dahomey Low 4 22 20 0 42 0 First
8 199 Dahomey Low 1 15 21 0 36 0 Second
8 199 Dahomey High 2 13 15 0 28 0 Second
8 199 Dahomey Low 3 14 19 0 33 0 Second
8 199 Dahomey High 4 15 20 0 35 0 Second
8 200 Dahomey Low 1 10 14 0 24 0 Second
8 200 Dahomey High 2 25 12 0 37 0 Second
8 200 Dahomey Low 3 17 14 0 31 0 Second
8 200 Dahomey High 4 15 17 0 32 0 Second
8 201 Sweden High 1 18 18 0 36 0 First
8 201 Sweden Low 2 21 20 0 41 0 First
8 201 Sweden High 3 19 18 0 37 0 First
8 201 Sweden Low 4 26 29 0 55 0 First
8 202 Sweden High 1 20 22 0 42 0 First
8 202 Sweden Low 2 25 25 0 50 0 First
8 202 Sweden High 3 9 19 0 28 0 First
8 202 Sweden Low 4 13 19 0 32 0 First
8 203 Sweden Low 1 21 21 1 43 0 Second
8 203 Sweden High 2 NA NA NA NA NA Second
8 203 Sweden Low 3 NA NA NA NA NA Second
8 203 Sweden High 4 NA NA NA NA NA Second
8 204 Sweden Low 1 10 18 0 28 0 Second
8 204 Sweden High 2 8 7 1 16 0 Second
8 204 Sweden Low 3 19 22 0 41 0 Second
8 204 Sweden High 4 16 21 0 37 0 Second
8 205 Israel High 1 19 15 0 34 0 First
8 205 Israel Low 2 16 32 0 48 0 First
8 205 Israel High 3 13 21 0 34 0 First
8 205 Israel Low 4 26 24 0 50 0 First
8 206 Israel High 1 20 16 0 36 0 First
8 206 Israel Low 2 21 31 0 52 0 First
8 206 Israel High 3 19 15 0 34 0 First
8 206 Israel Low 4 19 12 0 31 0 First
8 207 Israel Low 1 24 24 0 48 0 Second
8 207 Israel High 2 22 17 0 39 0 Second
8 207 Israel Low 3 20 16 0 36 0 Second
8 207 Israel High 4 8 10 0 18 0 Second
8 208 Israel Low 1 24 15 0 39 0 Second
8 208 Israel High 2 19 17 0 36 0 Second
8 208 Israel Low 3 14 18 1 33 0 Second
8 208 Israel High 4 15 13 0 28 0 Second
8 209 Brownsville High 1 24 28 0 52 0 First
8 209 Brownsville Low 2 19 30 0 49 0 First
8 209 Brownsville High 3 15 17 0 32 0 First
8 209 Brownsville Low 4 22 16 0 38 0 First
8 210 Brownsville High 1 25 27 0 52 0 First
8 210 Brownsville Low 2 34 25 0 59 0 First
8 210 Brownsville High 3 22 16 0 38 0 First
8 210 Brownsville Low 4 22 23 0 45 0 First
8 211 Brownsville Low 1 20 14 0 34 0 Second
8 211 Brownsville High 2 22 12 0 34 0 Second
8 211 Brownsville Low 3 20 13 0 33 0 Second
8 211 Brownsville High 4 15 13 0 28 0 Second
8 212 Brownsville Low 1 10 16 0 26 0 Second
8 212 Brownsville High 2 16 15 0 31 0 Second
8 212 Brownsville Low 3 16 20 0 36 0 Second
8 212 Brownsville High 4 21 12 0 33 0 Second
8 213 Barcelona High 1 16 19 2 37 0 First
8 213 Barcelona Low 2 17 29 0 46 0 First
8 213 Barcelona High 3 12 25 0 37 0 First
8 213 Barcelona Low 4 15 27 0 42 0 First
8 214 Barcelona High 1 9 21 0 30 0 First
8 214 Barcelona Low 2 16 19 0 35 0 First
8 214 Barcelona High 3 15 18 0 33 0 First
8 214 Barcelona Low 4 14 19 2 35 0 First
8 215 Barcelona High 1 10 7 0 17 0 First
8 215 Barcelona Low 2 1 10 0 11 0 First
8 215 Barcelona High 3 0 0 0 0 1 First
8 215 Barcelona Low 4 0 0 0 0 1 First
8 216 Barcelona Low 1 13 12 2 27 0 Second
8 216 Barcelona High 2 12 5 2 19 0 Second
8 216 Barcelona Low 3 27 23 0 50 0 Second
8 216 Barcelona High 4 17 22 1 40 0 Second
8 217 Barcelona Low 1 8 19 0 27 0 Second
8 217 Barcelona High 2 15 10 1 26 0 Second
8 217 Barcelona Low 3 4 6 2 12 0 Second
8 217 Barcelona High 4 0 0 0 0 0 Second

Experiment 2

Table S15: The raw data for Experiment 2; NAs indicate missing data due to the accidental release or killing of the fly. Flies that died naturally had their offspring production recorded as zero for any subsequent vials.

experiment2 %>%
  save_and_display_table("tab_S15.rds")
Block Female Haplotype Male.exposure Vial Female.offspring Male.offspring Other Total.offspring Mortality Order.of.exposure
1 1 Dahomey High 1 7 7 1 15 1 First
1 1 Dahomey Low 2 0 0 0 0 1 First
1 1 Dahomey High 3 0 0 0 0 1 First
1 1 Dahomey Low 4 0 0 0 0 1 First
1 2 Dahomey High 1 1 3 0 4 0 First
1 2 Dahomey Low 2 0 0 0 0 0 First
1 2 Dahomey High 3 0 0 0 0 0 First
1 2 Dahomey Low 4 0 0 0 0 0 First
1 3 Dahomey Low 1 6 3 2 11 0 Second
1 3 Dahomey High 2 5 7 0 12 0 Second
1 3 Dahomey Low 3 13 6 0 19 0 Second
1 3 Dahomey High 4 7 4 0 11 0 Second
1 4 Dahomey Low 1 15 32 0 47 0 Second
1 4 Dahomey High 2 13 10 0 23 0 Second
1 4 Dahomey Low 3 7 5 7 19 0 Second
1 4 Dahomey High 4 17 14 0 31 0 Second
1 5 Israel High 1 12 13 0 25 0 First
1 5 Israel Low 2 6 11 0 17 0 First
1 5 Israel High 3 5 3 0 8 0 First
1 5 Israel Low 4 12 10 0 22 0 First
1 6 Israel High 1 19 20 0 39 0 First
1 6 Israel Low 2 24 14 0 38 0 First
1 6 Israel High 3 15 7 0 22 0 First
1 6 Israel Low 4 18 12 0 30 0 First
1 7 Israel Low 1 15 19 0 34 0 Second
1 7 Israel High 2 7 13 0 20 0 Second
1 7 Israel Low 3 9 8 0 17 0 Second
1 7 Israel High 4 8 5 0 13 0 Second
1 8 Israel Low 1 7 10 0 17 0 Second
1 8 Israel High 2 14 8 0 22 0 Second
1 8 Israel Low 3 17 8 3 28 0 Second
1 8 Israel High 4 11 7 0 18 0 Second
1 9 Brownsville High 1 14 10 1 25 0 First
1 9 Brownsville Low 2 0 0 0 0 1 First
1 9 Brownsville High 3 0 0 0 0 1 First
1 9 Brownsville Low 4 0 0 0 0 1 First
1 10 Brownsville High 1 39 27 0 66 0 First
1 10 Brownsville Low 2 16 16 0 32 0 First
1 10 Brownsville High 3 11 13 8 32 0 First
1 10 Brownsville Low 4 10 8 0 18 0 First
1 11 Brownsville Low 1 21 19 0 40 0 Second
1 11 Brownsville High 2 9 10 0 19 0 Second
1 11 Brownsville Low 3 9 21 0 30 0 Second
1 11 Brownsville High 4 12 6 0 18 0 Second
1 12 Brownsville Low 1 11 6 0 17 0 Second
1 12 Brownsville High 2 10 7 0 17 0 Second
1 12 Brownsville Low 3 12 7 0 19 0 Second
1 12 Brownsville High 4 8 10 0 18 0 Second
1 13 Barcelona High 1 15 15 0 30 0 First
1 13 Barcelona Low 2 13 11 0 24 0 First
1 13 Barcelona High 3 6 13 0 19 0 First
1 13 Barcelona Low 4 10 16 1 27 0 First
1 14 Barcelona High 1 26 21 0 47 0 First
1 14 Barcelona Low 2 10 22 0 32 0 First
1 14 Barcelona High 3 20 15 1 36 0 First
1 14 Barcelona Low 4 23 16 0 39 0 First
1 15 Barcelona Low 1 12 7 0 19 0 Second
1 15 Barcelona High 2 6 7 0 13 0 Second
1 15 Barcelona Low 3 8 5 0 13 0 Second
1 15 Barcelona High 4 8 4 1 13 0 Second
1 16 Barcelona Low 1 10 4 0 14 0 Second
1 16 Barcelona High 2 3 5 0 8 0 Second
1 16 Barcelona Low 3 9 5 0 14 0 Second
1 16 Barcelona High 4 12 19 0 31 0 Second
2 17 Dahomey High 1 15 14 1 30 0 First
2 17 Dahomey Low 2 11 6 0 17 0 First
2 17 Dahomey High 3 11 13 0 24 0 First
2 17 Dahomey Low 4 20 15 0 35 0 First
2 18 Dahomey High 1 22 14 0 36 0 First
2 18 Dahomey Low 2 7 12 0 19 0 First
2 18 Dahomey High 3 16 9 0 25 0 First
2 18 Dahomey Low 4 9 15 0 24 0 First
2 19 Dahomey High 1 20 18 0 38 0 First
2 19 Dahomey Low 2 8 5 0 13 0 First
2 19 Dahomey High 3 13 15 0 28 0 First
2 19 Dahomey Low 4 16 25 0 41 0 First
2 20 Dahomey Low 1 14 15 0 29 0 Second
2 20 Dahomey High 2 4 3 0 7 0 Second
2 20 Dahomey Low 3 8 7 0 15 0 Second
2 20 Dahomey High 4 11 7 0 18 0 Second
2 21 Dahomey Low 1 4 2 0 6 0 Second
2 21 Dahomey High 2 11 3 0 14 0 Second
2 21 Dahomey Low 3 0 0 0 0 0 Second
2 21 Dahomey High 4 0 0 0 0 0 Second
2 22 Dahomey Low 1 0 0 17 17 0 Second
2 22 Dahomey High 2 2 8 0 10 0 Second
2 22 Dahomey Low 3 0 0 0 0 1 Second
2 22 Dahomey High 4 0 0 0 0 1 Second
2 23 Sweden High 1 9 6 2 17 0 First
2 23 Sweden Low 2 6 5 0 11 0 First
2 23 Sweden High 3 24 8 0 32 0 First
2 23 Sweden Low 4 22 10 0 32 0 First
2 24 Sweden High 1 3 7 0 10 0 First
2 24 Sweden Low 2 2 3 0 5 0 First
2 24 Sweden High 3 9 17 0 26 0 First
2 24 Sweden Low 4 1 1 0 2 0 First
2 25 Sweden High 1 11 5 1 17 0 First
2 25 Sweden Low 2 8 10 0 18 0 First
2 25 Sweden High 3 17 14 0 31 0 First
2 25 Sweden Low 4 14 10 0 24 0 First
2 26 Sweden Low 1 13 7 0 20 0 Second
2 26 Sweden High 2 13 14 1 28 0 Second
2 26 Sweden Low 3 13 11 0 24 0 Second
2 26 Sweden High 4 8 12 0 20 0 Second
2 27 Sweden Low 1 14 24 0 38 0 Second
2 27 Sweden High 2 12 12 0 24 0 Second
2 27 Sweden Low 3 5 2 0 7 0 Second
2 27 Sweden High 4 11 6 0 17 0 Second
2 28 Sweden Low 1 11 14 1 26 0 Second
2 28 Sweden High 2 9 7 0 16 0 Second
2 28 Sweden Low 3 18 12 0 30 0 Second
2 28 Sweden High 4 20 13 0 33 0 Second
2 29 Israel High 1 14 14 0 28 0 First
2 29 Israel Low 2 20 19 0 39 0 First
2 29 Israel High 3 20 15 0 35 0 First
2 29 Israel Low 4 5 6 0 11 0 First
2 30 Israel High 1 17 16 1 34 0 First
2 30 Israel Low 2 16 15 0 31 0 First
2 30 Israel High 3 19 16 0 35 0 First
2 30 Israel Low 4 17 9 0 26 0 First
2 31 Israel High 1 20 13 0 33 0 First
2 31 Israel Low 2 10 16 0 26 0 First
2 31 Israel High 3 13 10 0 23 0 First
2 31 Israel Low 4 14 17 0 31 0 First
2 32 Israel Low 1 15 16 0 31 0 Second
2 32 Israel High 2 6 12 0 18 0 Second
2 32 Israel Low 3 23 21 1 45 0 Second
2 32 Israel High 4 19 16 1 36 1 Second
2 33 Israel Low 1 13 12 0 25 0 Second
2 33 Israel High 2 10 14 0 24 0 Second
2 33 Israel Low 3 18 21 0 39 0 Second
2 33 Israel High 4 16 20 0 36 0 Second
2 34 Israel Low 1 17 11 1 29 0 Second
2 34 Israel High 2 6 13 0 19 0 Second
2 34 Israel Low 3 12 21 0 33 0 Second
2 34 Israel High 4 10 9 0 19 0 Second
2 35 Brownsville High 1 12 9 0 21 0 First
2 35 Brownsville Low 2 7 3 0 10 0 First
2 35 Brownsville High 3 8 10 0 18 0 First
2 35 Brownsville Low 4 16 10 0 26 0 First
2 36 Brownsville High 1 19 13 0 32 0 First
2 36 Brownsville Low 2 17 12 0 29 0 First
2 36 Brownsville High 3 19 13 0 32 0 First
2 36 Brownsville Low 4 16 15 0 31 0 First
2 37 Brownsville High 1 7 13 0 20 0 First
2 37 Brownsville Low 2 9 7 0 16 0 First
2 37 Brownsville High 3 11 21 1 33 0 First
2 37 Brownsville Low 4 15 27 0 42 0 First
2 38 Brownsville Low 1 18 15 0 33 0 Second
2 38 Brownsville High 2 8 7 0 15 0 Second
2 38 Brownsville Low 3 12 20 0 32 0 Second
2 38 Brownsville High 4 16 21 0 37 0 Second
2 39 Brownsville Low 1 3 18 0 21 0 Second
2 39 Brownsville High 2 7 11 0 18 0 Second
2 39 Brownsville Low 3 14 14 0 28 0 Second
2 39 Brownsville High 4 14 21 0 35 0 Second
2 40 Barcelona High 1 9 11 0 20 0 First
2 40 Barcelona Low 2 9 12 1 22 0 First
2 40 Barcelona High 3 3 5 1 9 0 First
2 40 Barcelona Low 4 1 0 0 1 1 First
2 41 Barcelona High 1 13 18 0 31 0 First
2 41 Barcelona Low 2 10 10 0 20 0 First
2 41 Barcelona High 3 12 16 3 31 0 First
2 41 Barcelona Low 4 17 8 1 26 0 First
2 42 Barcelona High 1 46 27 0 73 0 First
2 42 Barcelona Low 2 6 13 0 19 0 First
2 42 Barcelona High 3 8 16 0 24 0 First
2 42 Barcelona Low 4 4 10 0 14 0 First
2 43 Barcelona Low 1 20 9 0 29 0 Second
2 43 Barcelona High 2 1 5 2 8 0 Second
2 43 Barcelona Low 3 2 5 0 7 0 Second
2 43 Barcelona High 4 3 3 0 6 0 Second
2 44 Barcelona Low 1 17 18 0 35 0 Second
2 44 Barcelona High 2 10 10 0 20 0 Second
2 44 Barcelona Low 3 22 17 0 39 0 Second
2 44 Barcelona High 4 14 16 0 30 0 Second
4 45 Dahomey High 1 8 11 0 19 0 First
4 45 Dahomey Low 2 6 14 0 20 0 First
4 45 Dahomey High 3 12 6 0 18 0 First
4 45 Dahomey Low 4 18 15 0 33 0 First
4 46 Dahomey High 1 3 5 0 8 0 First
4 46 Dahomey Low 2 6 11 0 17 0 First
4 46 Dahomey High 3 4 6 0 10 0 First
4 46 Dahomey Low 4 0 0 0 0 0 First
4 47 Dahomey Low 1 11 12 0 23 0 Second
4 47 Dahomey High 2 4 10 0 14 0 Second
4 47 Dahomey Low 3 10 14 0 24 0 Second
4 47 Dahomey High 4 20 20 0 40 0 Second
4 48 Dahomey Low 1 22 24 0 46 0 Second
4 48 Dahomey High 2 10 22 0 32 0 Second
4 48 Dahomey Low 3 9 15 0 24 0 Second
4 48 Dahomey High 4 26 20 0 46 0 Second
4 49 Sweden High 1 13 16 0 29 0 First
4 49 Sweden Low 2 16 13 0 29 0 First
4 49 Sweden High 3 16 14 0 30 0 First
4 49 Sweden Low 4 0 0 0 0 1 First
4 50 Sweden High 1 17 14 0 31 0 First
4 50 Sweden Low 2 7 12 0 19 0 First
4 50 Sweden High 3 6 10 0 16 0 First
4 50 Sweden Low 4 0 0 0 0 1 First
4 51 Sweden High 1 15 15 0 30 0 First
4 51 Sweden Low 2 6 4 0 10 0 First
4 51 Sweden High 3 20 17 0 37 0 First
4 51 Sweden Low 4 19 15 1 35 0 First
4 52 Sweden Low 1 22 16 0 38 0 Second
4 52 Sweden High 2 10 13 0 23 0 Second
4 52 Sweden Low 3 17 21 0 38 0 Second
4 52 Sweden High 4 19 13 0 32 0 Second
4 53 Sweden Low 1 13 18 0 31 0 Second
4 53 Sweden High 2 10 8 0 18 0 Second
4 53 Sweden Low 3 6 18 0 24 0 Second
4 53 Sweden High 4 4 5 0 9 0 Second
4 54 Sweden Low 1 13 15 4 32 0 Second
4 54 Sweden High 2 14 20 0 34 0 Second
4 54 Sweden Low 3 20 15 0 35 0 Second
4 54 Sweden High 4 23 31 0 54 0 Second
4 55 Israel High 1 19 16 0 35 0 First
4 55 Israel Low 2 9 7 0 16 0 First
4 55 Israel High 3 14 19 1 34 0 First
4 55 Israel Low 4 25 25 0 50 0 First
4 56 Israel High 1 8 7 0 15 0 First
4 56 Israel Low 2 7 9 0 16 0 First
4 56 Israel High 3 9 8 0 17 0 First
4 56 Israel Low 4 1 0 1 2 1 First
4 57 Israel Low 1 18 15 0 33 0 Second
4 57 Israel High 2 14 15 0 29 0 Second
4 57 Israel Low 3 11 14 0 25 0 Second
4 57 Israel High 4 26 20 0 46 0 Second
4 58 Israel Low 1 24 12 1 37 0 Second
4 58 Israel High 2 17 15 0 32 0 Second
4 58 Israel Low 3 19 12 0 31 0 Second
4 58 Israel High 4 29 31 1 61 0 Second
4 59 Brownsville High 1 13 17 0 30 0 First
4 59 Brownsville Low 2 6 14 0 20 0 First
4 59 Brownsville High 3 13 23 0 36 0 First
4 59 Brownsville Low 4 24 16 0 40 0 First
4 60 Brownsville High 1 15 11 0 26 0 First
4 60 Brownsville Low 2 3 10 0 13 0 First
4 60 Brownsville High 3 12 14 0 26 0 First
4 60 Brownsville Low 4 13 25 0 38 0 First
4 61 Brownsville Low 1 16 18 0 34 0 Second
4 61 Brownsville High 2 7 8 0 15 0 Second
4 61 Brownsville Low 3 9 4 0 13 0 Second
4 61 Brownsville High 4 21 18 0 39 0 Second
4 62 Brownsville Low 1 10 16 0 26 0 Second
4 62 Brownsville High 2 9 10 0 19 0 Second
4 62 Brownsville Low 3 0 0 0 0 1 Second
4 62 Brownsville High 4 0 0 0 0 1 Second
4 63 Barcelona High 1 18 13 0 31 0 First
4 63 Barcelona Low 2 16 9 0 25 0 First
4 63 Barcelona High 3 24 24 0 48 0 First
4 63 Barcelona Low 4 20 23 0 43 0 First
4 64 Barcelona High 1 12 13 0 25 0 First
4 64 Barcelona Low 2 7 8 0 15 0 First
4 64 Barcelona High 3 11 10 0 21 0 First
4 64 Barcelona Low 4 14 30 0 44 0 First
4 65 Barcelona Low 1 14 11 0 25 0 Second
4 65 Barcelona High 2 11 7 1 19 0 Second
4 65 Barcelona Low 3 24 16 0 40 0 Second
4 65 Barcelona High 4 29 15 1 45 0 Second
4 66 Barcelona Low 1 25 19 0 44 0 Second
4 66 Barcelona High 2 13 9 1 23 0 Second
4 66 Barcelona Low 3 22 19 0 41 0 Second
4 66 Barcelona High 4 35 31 0 66 0 Second
5 67 Dahomey Low 1 17 17 0 34 0 Second
5 67 Dahomey High 2 12 19 0 31 0 Second
5 67 Dahomey Low 3 30 27 0 57 0 Second
5 67 Dahomey High 4 37 19 2 58 0 Second
5 68 Dahomey Low 1 19 20 0 39 0 Second
5 68 Dahomey High 2 23 17 0 40 0 Second
5 68 Dahomey Low 3 20 23 0 43 0 Second
5 68 Dahomey High 4 9 20 0 29 0 Second
5 69 Dahomey Low 1 19 15 5 39 0 Second
5 69 Dahomey High 2 20 14 0 34 0 Second
5 69 Dahomey Low 3 27 26 0 53 0 Second
5 69 Dahomey High 4 13 18 0 31 0 Second
5 70 Dahomey High 1 13 17 0 30 0 First
5 70 Dahomey Low 2 3 1 0 4 0 First
5 70 Dahomey High 3 10 9 1 20 0 First
5 70 Dahomey Low 4 0 0 0 0 1 First
5 71 Dahomey High 1 21 18 1 40 0 First
5 71 Dahomey Low 2 9 6 1 16 0 First
5 71 Dahomey High 3 0 0 0 0 1 First
5 71 Dahomey Low 4 0 0 0 0 1 First
5 72 Dahomey High 1 7 14 0 21 0 First
5 72 Dahomey Low 2 18 16 0 34 0 First
5 72 Dahomey High 3 28 26 0 54 0 First
5 72 Dahomey Low 4 12 8 0 20 0 First
5 73 Sweden Low 1 11 13 1 25 0 Second
5 73 Sweden High 2 23 30 0 53 0 Second
5 73 Sweden Low 3 24 31 0 55 0 Second
5 73 Sweden High 4 20 12 0 32 0 Second
5 74 Sweden Low 1 10 6 0 16 0 Second
5 74 Sweden High 2 23 31 0 54 0 Second
5 74 Sweden Low 3 0 0 0 0 1 Second
5 74 Sweden High 4 0 0 0 0 1 Second
5 75 Sweden Low 1 16 20 1 37 0 Second
5 75 Sweden High 2 21 27 0 48 0 Second
5 75 Sweden Low 3 26 19 0 45 0 Second
5 75 Sweden High 4 19 18 0 37 0 Second
5 76 Sweden High 1 11 17 0 28 0 First
5 76 Sweden Low 2 26 13 0 39 0 First
5 76 Sweden High 3 17 17 0 34 0 First
5 76 Sweden Low 4 12 19 0 31 0 First
5 77 Sweden High 1 8 10 0 18 0 First
5 77 Sweden Low 2 24 29 1 54 0 First
5 77 Sweden High 3 25 27 0 52 0 First
5 77 Sweden Low 4 14 16 0 30 0 First
5 78 Sweden High 1 12 20 1 33 0 First
5 78 Sweden Low 2 13 11 0 24 0 First
5 78 Sweden High 3 32 25 1 58 0 First
5 78 Sweden Low 4 0 0 0 0 1 First
5 79 Israel Low 1 27 26 0 53 0 Second
5 79 Israel High 2 16 14 0 30 0 Second
5 79 Israel Low 3 0 0 0 0 1 Second
5 79 Israel High 4 0 0 0 0 1 Second
5 80 Israel Low 1 9 5 0 14 0 Second
5 80 Israel High 2 6 5 0 11 0 Second
5 80 Israel Low 3 7 8 0 15 0 Second
5 80 Israel High 4 8 13 0 21 0 Second
5 81 Israel Low 1 7 15 0 22 0 Second
5 81 Israel High 2 12 15 0 27 0 Second
5 81 Israel Low 3 21 17 0 38 0 Second
5 81 Israel High 4 8 10 0 18 0 Second
5 82 Israel High 1 9 7 0 16 0 First
5 82 Israel Low 2 4 3 0 7 0 First
5 82 Israel High 3 1 5 0 6 0 First
5 82 Israel Low 4 3 11 0 14 0 First
5 83 Israel High 1 15 23 0 38 0 First
5 83 Israel Low 2 7 12 0 19 0 First
5 83 Israel High 3 24 29 0 53 0 First
5 83 Israel Low 4 31 29 0 60 0 First
5 84 Israel High 1 12 16 0 28 0 First
5 84 Israel Low 2 NA NA NA NA NA First
5 84 Israel High 3 NA NA NA NA NA First
5 84 Israel Low 4 NA NA NA NA NA First
5 85 Brownsville Low 1 17 15 1 33 0 Second
5 85 Brownsville High 2 9 18 0 27 0 Second
5 85 Brownsville Low 3 26 26 0 52 0 Second
5 85 Brownsville High 4 5 9 0 14 0 Second
5 86 Brownsville Low 1 15 15 0 30 0 Second
5 86 Brownsville High 2 13 27 0 40 0 Second
5 86 Brownsville Low 3 30 32 0 62 0 Second
5 86 Brownsville High 4 13 11 0 24 0 Second
5 87 Brownsville Low 1 17 18 0 35 0 Second
5 87 Brownsville High 2 17 16 0 33 0 Second
5 87 Brownsville Low 3 15 25 0 40 0 Second
5 87 Brownsville High 4 13 9 0 22 0 Second
5 88 Brownsville High 1 10 17 0 27 0 First
5 88 Brownsville Low 2 11 9 0 20 0 First
5 88 Brownsville High 3 14 23 0 37 0 First
5 88 Brownsville Low 4 3 5 0 8 0 First
5 89 Brownsville High 1 11 15 1 27 0 First
5 89 Brownsville Low 2 19 10 0 29 0 First
5 89 Brownsville High 3 17 19 1 37 0 First
5 89 Brownsville Low 4 13 12 0 25 0 First
5 90 Brownsville High 1 20 18 1 39 0 First
5 90 Brownsville Low 2 25 11 0 36 0 First
5 90 Brownsville High 3 13 17 1 31 0 First
5 90 Brownsville Low 4 0 0 0 0 0 First
5 91 Barcelona Low 1 17 5 1 23 0 Second
5 91 Barcelona High 2 7 18 0 25 0 Second
5 91 Barcelona Low 3 5 2 0 7 0 Second
5 91 Barcelona High 4 4 3 0 7 0 Second
5 92 Barcelona Low 1 22 22 0 44 0 Second
5 92 Barcelona High 2 2 5 0 7 1 Second
5 92 Barcelona Low 3 0 0 0 0 1 Second
5 92 Barcelona High 4 0 0 0 0 1 Second
5 93 Barcelona Low 1 14 14 0 28 0 Second
5 93 Barcelona High 2 13 26 0 39 0 Second
5 93 Barcelona Low 3 15 25 0 40 0 Second
5 93 Barcelona High 4 22 23 0 45 0 Second
5 94 Barcelona High 1 15 28 0 43 0 First
5 94 Barcelona Low 2 16 16 0 32 0 First
5 94 Barcelona High 3 24 30 0 54 0 First
5 94 Barcelona Low 4 0 0 0 0 1 First
5 95 Barcelona High 1 21 18 1 40 0 First
5 95 Barcelona Low 2 19 19 0 38 0 First
5 95 Barcelona High 3 26 26 0 52 0 First
5 95 Barcelona Low 4 16 17 1 34 0 First
5 96 Barcelona High 1 18 22 2 42 0 First
5 96 Barcelona Low 2 12 17 2 31 0 First
5 96 Barcelona High 3 21 23 0 44 0 First
5 96 Barcelona Low 4 23 25 0 48 0 First
6 97 Dahomey High 1 10 12 0 22 0 First
6 97 Dahomey Low 2 9 15 0 24 0 First
6 97 Dahomey High 3 17 22 0 39 0 First
6 97 Dahomey Low 4 2 8 0 10 0 First
6 98 Dahomey High 1 5 10 1 16 0 First
6 98 Dahomey Low 2 1 5 0 6 0 First
6 98 Dahomey High 3 0 0 0 0 0 First
6 98 Dahomey Low 4 0 0 0 0 1 First
6 99 Dahomey Low 1 6 9 0 15 0 Second
6 99 Dahomey High 2 6 8 0 14 0 Second
6 99 Dahomey Low 3 8 8 0 16 0 Second
6 99 Dahomey High 4 2 4 0 6 0 Second
6 100 Dahomey Low 1 8 9 0 17 0 Second
6 100 Dahomey High 2 14 9 1 24 0 Second
6 100 Dahomey Low 3 14 12 0 26 0 Second
6 100 Dahomey High 4 2 6 0 8 0 Second
6 101 Sweden High 1 21 17 1 39 0 First
6 101 Sweden Low 2 30 24 0 54 0 First
6 101 Sweden High 3 21 27 0 48 0 First
6 101 Sweden Low 4 17 23 0 40 0 First
6 102 Sweden High 1 12 16 0 28 0 First
6 102 Sweden Low 2 17 18 1 36 0 First
6 102 Sweden High 3 19 20 1 40 0 First
6 102 Sweden Low 4 2 2 0 4 0 First
6 103 Sweden Low 1 11 10 1 22 0 Second
6 103 Sweden High 2 3 5 1 9 0 Second
6 103 Sweden Low 3 5 4 0 9 0 Second
6 103 Sweden High 4 0 0 0 0 0 Second
6 104 Sweden Low 1 16 23 2 41 0 Second
6 104 Sweden High 2 10 10 0 20 0 Second
6 104 Sweden Low 3 0 1 0 1 1 Second
6 104 Sweden High 4 0 0 0 0 1 Second
6 105 Israel High 1 16 17 0 33 0 First
6 105 Israel Low 2 23 18 0 41 0 First
6 105 Israel High 3 10 27 0 37 0 First
6 105 Israel Low 4 5 4 0 9 0 First
6 106 Israel High 1 17 19 0 36 0 First
6 106 Israel Low 2 11 8 0 19 0 First
6 106 Israel High 3 22 15 0 37 0 First
6 106 Israel Low 4 9 8 0 17 0 First
6 107 Israel Low 1 14 14 0 28 0 Second
6 107 Israel High 2 8 12 0 20 0 Second
6 107 Israel Low 3 16 18 0 34 0 Second
6 107 Israel High 4 11 18 0 29 0 Second
6 108 Israel Low 1 24 29 0 53 0 Second
6 108 Israel High 2 21 14 1 36 0 Second
6 108 Israel Low 3 16 30 0 46 0 Second
6 108 Israel High 4 19 18 0 37 0 Second
6 109 Brownsville High 1 15 19 0 34 0 First
6 109 Brownsville Low 2 15 15 0 30 0 First
6 109 Brownsville High 3 22 31 0 53 0 First
6 109 Brownsville Low 4 17 17 0 34 0 First
6 110 Brownsville High 1 14 7 0 21 0 First
6 110 Brownsville Low 2 8 9 0 17 0 First
6 110 Brownsville High 3 13 5 0 18 0 First
6 110 Brownsville Low 4 7 8 0 15 0 First
6 111 Brownsville Low 1 4 11 1 16 0 Second
6 111 Brownsville High 2 14 7 0 21 0 Second
6 111 Brownsville Low 3 10 14 0 24 0 Second
6 111 Brownsville High 4 19 26 0 45 0 Second
6 112 Brownsville Low 1 9 17 1 27 0 Second
6 112 Brownsville High 2 8 15 1 24 0 Second
6 112 Brownsville Low 3 8 16 0 24 0 Second
6 112 Brownsville High 4 9 9 0 18 0 Second
6 113 Barcelona High 1 13 17 2 32 0 First
6 113 Barcelona Low 2 15 14 1 30 0 First
6 113 Barcelona High 3 12 30 0 42 0 First
6 113 Barcelona Low 4 0 0 0 0 1 First
6 114 Barcelona High 1 9 13 0 22 0 First
6 114 Barcelona Low 2 10 5 0 15 0 First
6 114 Barcelona High 3 12 10 0 22 0 First
6 114 Barcelona Low 4 10 11 0 21 0 First
6 115 Barcelona Low 1 8 10 0 18 0 Second
6 115 Barcelona High 2 7 6 0 13 0 Second
6 115 Barcelona Low 3 1 1 0 2 0 Second
6 115 Barcelona High 4 0 0 0 0 1 Second
6 116 Barcelona Low 1 6 4 2 12 0 Second
6 116 Barcelona High 2 8 6 1 15 0 Second
6 116 Barcelona Low 3 1 5 0 6 0 Second
6 116 Barcelona High 4 2 3 0 5 0 Second
7 117 Dahomey High 1 32 14 0 46 0 First
7 117 Dahomey Low 2 9 3 1 13 0 First
7 117 Dahomey High 3 8 7 0 15 0 First
7 117 Dahomey Low 4 0 2 0 2 0 First
7 118 Dahomey High 1 1 1 0 2 1 First
7 118 Dahomey Low 2 0 0 0 0 1 First
7 118 Dahomey High 3 0 0 0 0 1 First
7 118 Dahomey Low 4 0 0 0 0 1 First
7 119 Dahomey High 1 21 21 0 42 0 First
7 119 Dahomey Low 2 20 18 0 38 0 First
7 119 Dahomey High 3 24 28 3 55 0 First
7 119 Dahomey Low 4 28 37 1 66 0 First
7 120 Dahomey Low 1 18 30 0 48 0 Second
7 120 Dahomey High 2 7 5 0 12 1 Second
7 120 Dahomey Low 3 0 0 0 0 1 Second
7 120 Dahomey High 4 0 0 0 0 1 Second
7 121 Dahomey Low 1 22 14 0 36 0 Second
7 121 Dahomey High 2 11 24 0 35 0 Second
7 121 Dahomey Low 3 25 9 0 34 0 Second
7 121 Dahomey High 4 7 6 0 13 0 Second
7 122 Dahomey Low 1 20 22 0 42 0 Second
7 122 Dahomey High 2 9 29 0 38 0 Second
7 122 Dahomey Low 3 16 21 0 37 0 Second
7 122 Dahomey High 4 23 10 0 33 0 Second
7 123 Sweden High 1 21 24 0 45 0 First
7 123 Sweden Low 2 17 14 0 31 0 First
7 123 Sweden High 3 19 19 0 38 0 First
7 123 Sweden Low 4 16 11 0 27 0 First
7 124 Sweden High 1 24 24 0 48 0 First
7 124 Sweden Low 2 27 29 0 56 0 First
7 124 Sweden High 3 11 13 0 24 0 First
7 124 Sweden Low 4 6 3 0 9 0 First
7 125 Sweden High 1 23 18 1 42 0 First
7 125 Sweden Low 2 17 15 0 32 0 First
7 125 Sweden High 3 31 21 0 52 0 First
7 125 Sweden Low 4 17 17 0 34 0 First
7 126 Sweden Low 1 22 32 0 54 0 Second
7 126 Sweden High 2 14 10 0 24 0 Second
7 126 Sweden Low 3 14 16 0 30 0 Second
7 126 Sweden High 4 17 16 0 33 0 Second
7 127 Sweden Low 1 15 23 0 38 0 Second
7 127 Sweden High 2 14 19 0 33 0 Second
7 127 Sweden Low 3 7 2 0 9 0 Second
7 127 Sweden High 4 16 21 0 37 0 Second
7 128 Sweden Low 1 26 16 0 42 0 Second
7 128 Sweden High 2 23 24 0 47 0 Second
7 128 Sweden Low 3 25 18 0 43 0 Second
7 128 Sweden High 4 24 17 2 43 0 Second
7 129 Israel High 1 16 25 0 41 0 First
7 129 Israel Low 2 9 12 0 21 0 First
7 129 Israel High 3 10 9 0 19 0 First
7 129 Israel Low 4 18 18 0 36 0 First
7 130 Israel High 1 27 27 2 56 0 First
7 130 Israel Low 2 16 22 0 38 0 First
7 130 Israel High 3 14 16 0 30 0 First
7 130 Israel Low 4 0 0 0 0 1 First
7 131 Israel High 1 16 23 0 39 0 First
7 131 Israel Low 2 0 0 0 0 0 First
7 131 Israel High 3 0 0 0 0 1 First
7 131 Israel Low 4 0 0 0 0 1 First
7 132 Israel Low 1 8 17 0 25 0 Second
7 132 Israel High 2 12 15 0 27 0 Second
7 132 Israel Low 3 1 1 0 2 1 Second
7 132 Israel High 4 0 0 0 0 1 Second
7 133 Israel Low 1 19 13 0 32 0 Second
7 133 Israel High 2 13 17 0 30 0 Second
7 133 Israel Low 3 16 14 0 30 0 Second
7 133 Israel High 4 12 19 0 31 0 Second
7 134 Israel Low 1 14 22 0 36 0 Second
7 134 Israel High 2 10 8 0 18 0 Second
7 134 Israel Low 3 15 18 0 33 0 Second
7 134 Israel High 4 11 18 0 29 0 Second
7 135 Brownsville High 1 28 25 1 54 0 First
7 135 Brownsville Low 2 24 25 0 49 0 First
7 135 Brownsville High 3 19 16 1 36 0 First
7 135 Brownsville Low 4 0 0 0 0 0 First
7 136 Brownsville High 1 19 17 0 36 0 First
7 136 Brownsville Low 2 23 21 0 44 0 First
7 136 Brownsville High 3 21 9 0 30 0 First
7 136 Brownsville Low 4 12 13 0 25 0 First
7 137 Brownsville High 1 28 27 0 55 0 First
7 137 Brownsville Low 2 15 30 0 45 0 First
7 137 Brownsville High 3 19 13 0 32 0 First
7 137 Brownsville Low 4 0 0 0 0 0 First
7 138 Brownsville Low 1 15 19 0 34 0 Second
7 138 Brownsville High 2 13 10 0 23 0 Second
7 138 Brownsville Low 3 15 11 0 26 0 Second
7 138 Brownsville High 4 10 7 2 19 1 Second
7 139 Barcelona High 1 12 17 0 29 0 First
7 139 Barcelona Low 2 12 11 0 23 0 First
7 139 Barcelona High 3 10 11 0 21 0 First
7 139 Barcelona Low 4 5 8 0 13 0 First
7 140 Barcelona High 1 7 14 0 21 0 First
7 140 Barcelona Low 2 15 17 0 32 0 First
7 140 Barcelona High 3 8 10 0 18 0 First
7 140 Barcelona Low 4 14 11 0 25 0 First
7 141 Barcelona High 1 20 30 0 50 0 First
7 141 Barcelona Low 2 20 20 0 40 0 First
7 141 Barcelona High 3 19 30 0 49 0 First
7 141 Barcelona Low 4 3 4 0 7 0 First
7 142 Barcelona Low 1 20 17 0 37 0 Second
7 142 Barcelona High 2 11 10 0 21 0 Second
7 142 Barcelona Low 3 1 2 0 3 0 Second
7 142 Barcelona High 4 0 0 0 0 1 Second
7 143 Barcelona Low 1 12 17 0 29 0 Second
7 143 Barcelona High 2 7 12 0 19 0 Second
7 143 Barcelona Low 3 2 11 0 13 0 Second
7 143 Barcelona High 4 5 3 0 8 0 Second
7 144 Barcelona Low 1 21 21 2 44 0 Second
7 144 Barcelona High 2 15 12 0 27 0 Second
7 144 Barcelona Low 3 3 10 0 13 0 Second
7 144 Barcelona High 4 6 10 0 16 0 Second
8 145 Dahomey High 1 40 28 0 68 0 First
8 145 Dahomey Low 2 19 19 0 38 0 First
8 145 Dahomey High 3 8 12 0 20 0 First
8 145 Dahomey Low 4 0 0 0 0 0 First
8 146 Dahomey High 1 26 25 0 51 0 First
8 146 Dahomey Low 2 11 12 0 23 0 First
8 146 Dahomey High 3 28 32 1 61 0 First
8 146 Dahomey Low 4 16 22 0 38 0 First
8 147 Dahomey Low 1 27 27 0 54 0 Second
8 147 Dahomey High 2 13 11 0 24 0 Second
8 147 Dahomey Low 3 4 1 0 5 0 Second
8 147 Dahomey High 4 6 9 0 15 0 Second
8 148 Dahomey Low 1 27 21 0 48 0 Second
8 148 Dahomey High 2 8 16 0 24 0 Second
8 148 Dahomey Low 3 0 1 0 1 1 Second
8 148 Dahomey High 4 0 0 0 0 1 Second
8 149 Dahomey Low 1 17 10 1 28 0 Second
8 149 Dahomey High 2 12 20 0 32 0 Second
8 149 Dahomey Low 3 4 1 0 5 0 Second
8 149 Dahomey High 4 12 8 0 20 0 Second
8 150 Sweden High 1 24 26 0 50 0 First
8 150 Sweden Low 2 27 23 0 50 0 First
8 150 Sweden High 3 20 31 0 51 0 First
8 150 Sweden Low 4 14 23 0 37 0 First
8 151 Sweden High 1 23 23 0 46 0 First
8 151 Sweden Low 2 20 18 0 38 0 First
8 151 Sweden High 3 17 28 0 45 0 First
8 151 Sweden Low 4 20 26 0 46 0 First
8 152 Sweden High 1 21 29 0 50 0 First
8 152 Sweden Low 2 22 13 0 35 0 First
8 152 Sweden High 3 12 16 0 28 0 First
8 152 Sweden Low 4 14 21 1 36 0 First
8 153 Sweden Low 1 32 17 0 49 0 Second
8 153 Sweden High 2 11 13 1 25 0 Second
8 153 Sweden Low 3 38 28 0 66 0 Second
8 153 Sweden High 4 33 34 1 68 0 Second
8 154 Sweden Low 1 6 14 0 20 0 Second
8 154 Sweden High 2 21 21 0 42 0 Second
8 154 Sweden Low 3 16 15 0 31 0 Second
8 154 Sweden High 4 11 14 0 25 0 Second
8 155 Sweden Low 1 17 20 0 37 0 Second
8 155 Sweden High 2 22 31 0 53 0 Second
8 155 Sweden Low 3 30 31 1 62 0 Second
8 155 Sweden High 4 35 30 0 65 0 Second
8 156 Israel High 1 27 40 0 67 0 First
8 156 Israel Low 2 27 19 1 47 0 First
8 156 Israel High 3 37 40 0 77 0 First
8 156 Israel Low 4 29 31 4 64 0 First
8 157 Israel High 1 7 23 0 30 0 First
8 157 Israel Low 2 30 29 0 59 0 First
8 157 Israel High 3 19 30 0 49 0 First
8 157 Israel Low 4 0 2 0 2 1 First
8 158 Israel High 1 29 31 0 60 0 First
8 158 Israel Low 2 20 18 0 38 0 First
8 158 Israel High 3 19 23 0 42 0 First
8 158 Israel Low 4 52 55 3 110 0 First
8 159 Israel Low 1 18 21 0 39 0 Second
8 159 Israel High 2 10 12 0 22 0 Second
8 159 Israel Low 3 23 28 0 51 0 Second
8 159 Israel High 4 0 0 0 0 1 Second
8 160 Israel Low 1 14 17 0 31 0 Second
8 160 Israel High 2 15 17 0 32 0 Second
8 160 Israel Low 3 19 24 2 45 0 Second
8 160 Israel High 4 15 25 0 40 0 Second
8 161 Brownsville High 1 24 25 5 54 0 First
8 161 Brownsville Low 2 19 31 0 50 0 First
8 161 Brownsville High 3 10 15 0 25 0 First
8 161 Brownsville Low 4 0 0 0 0 1 First
8 162 Brownsville High 1 25 20 0 45 0 First
8 162 Brownsville Low 2 17 22 0 39 0 First
8 162 Brownsville High 3 9 18 0 27 0 First
8 162 Brownsville Low 4 13 16 0 29 0 First
8 163 Brownsville Low 1 18 26 0 44 0 Second
8 163 Brownsville High 2 11 12 1 24 0 Second
8 163 Brownsville Low 3 13 20 0 33 0 Second
8 163 Brownsville High 4 18 22 0 40 0 Second
8 164 Brownsville Low 1 25 24 0 49 0 Second
8 164 Brownsville High 2 24 10 0 34 0 Second
8 164 Brownsville Low 3 19 28 0 47 0 Second
8 164 Brownsville High 4 25 24 0 49 0 Second
8 165 Barcelona High 1 11 11 0 22 1 First
8 165 Barcelona Low 2 0 0 0 0 1 First
8 165 Barcelona High 3 0 0 0 0 1 First
8 165 Barcelona Low 4 0 0 0 0 1 First
8 166 Barcelona High 1 32 30 1 63 0 First
8 166 Barcelona Low 2 9 16 0 25 0 First
8 166 Barcelona High 3 22 31 0 53 0 First
8 166 Barcelona Low 4 16 15 0 31 0 First
8 167 Barcelona High 1 22 21 0 43 0 First
8 167 Barcelona Low 2 0 0 0 0 0 First
8 167 Barcelona High 3 0 0 0 0 0 First
8 167 Barcelona Low 4 0 0 0 0 0 First
8 168 Barcelona Low 1 25 18 0 43 0 Second
8 168 Barcelona High 2 16 16 0 32 0 Second
8 168 Barcelona Low 3 3 14 0 17 0 Second
8 168 Barcelona High 4 0 0 0 0 1 Second
8 169 Barcelona Low 1 18 21 0 39 0 Second
8 169 Barcelona High 2 6 8 0 14 0 Second
8 169 Barcelona Low 3 5 9 0 14 1 Second
8 169 Barcelona High 4 0 0 0 0 1 Second

R session info

The following gives information about the computing environment and R packages used to generate this report.

sessionInfo() %>% pander(split.cell = 40, split.table = Inf)

R version 3.5.1 (2018-07-02)

Platform: x86_64-apple-darwin15.6.0 (64-bit)

locale: en_AU.UTF-8||en_AU.UTF-8||en_AU.UTF-8||C||en_AU.UTF-8||en_AU.UTF-8

attached base packages: stats, graphics, grDevices, utils, datasets, methods and base

other attached packages: tibble(v.2.1.3), tidybayes(v.1.1.0), bayestestR(v.0.2.2), ggbeeswarm(v.0.6.0), mice(v.3.3.0), lattice(v.0.20-35), kableExtra(v.0.9.0), tidyr(v.0.8.2), purrr(v.0.3.2), showtext(v.0.5-1), showtextdb(v.2.0), sysfonts(v.0.7.2), pander(v.0.6.2), viridis(v.0.5.1), viridisLite(v.0.3.0), RColorBrewer(v.1.1-2), ggridges(v.0.5.0), ggplot2(v.3.1.0), reshape2(v.1.4.3), stringr(v.1.4.0), brms(v.2.9.0), Rcpp(v.1.0.2), dplyr(v.0.8.3), gridExtra(v.2.3) and knitr(v.1.23)

loaded via a namespace (and not attached): minqa(v.1.2.4), colorspace(v.1.3-2), rsconnect(v.0.8.8), ggstance(v.0.3.1), markdown(v.1.0), base64enc(v.0.1-3), rstudioapi(v.0.10), rstan(v.2.18.2), svUnit(v.0.7-12), DT(v.0.4), fansi(v.0.4.0), mvtnorm(v.1.0-11), xml2(v.1.2.0), bridgesampling(v.0.4-0), splines(v.3.5.1), shinythemes(v.1.1.1), bayesplot(v.1.6.0), jsonlite(v.1.6), nloptr(v.1.0.4), broom(v.0.5.0), shiny(v.1.3.2), readr(v.1.1.1), compiler(v.3.5.1), httr(v.1.4.0), backports(v.1.1.2), assertthat(v.0.2.1), Matrix(v.1.2-14), lazyeval(v.0.2.2), cli(v.1.1.0), later(v.0.8.0), htmltools(v.0.3.6), prettyunits(v.1.0.2), tools(v.3.5.1), igraph(v.1.2.1), coda(v.0.19-2), gtable(v.0.2.0), glue(v.1.3.1.9000), nlme(v.3.1-137), crosstalk(v.1.0.0), insight(v.0.3.0), xfun(v.0.8), ps(v.1.3.0), lme4(v.1.1-17), rvest(v.0.3.2), mime(v.0.7), miniUI(v.0.1.1.1), gtools(v.3.8.1), pan(v.1.6), MASS(v.7.3-50), zoo(v.1.8-3), scales(v.1.0.0), colourpicker(v.1.0), hms(v.0.4.2), promises(v.1.0.1), Brobdingnag(v.1.2-5), parallel(v.3.5.1), inline(v.0.3.15), shinystan(v.2.5.0), curl(v.3.3), yaml(v.2.2.0), loo(v.2.1.0), StanHeaders(v.2.18.0), rpart(v.4.1-13), stringi(v.1.4.3), dygraphs(v.1.1.1.6), pkgbuild(v.1.0.2), rlang(v.0.4.0), pkgconfig(v.2.0.2), matrixStats(v.0.54.0), evaluate(v.0.14), labeling(v.0.3), rstantools(v.1.5.0), htmlwidgets(v.1.3), processx(v.3.2.1), tidyselect(v.0.2.5), plyr(v.1.8.4), magrittr(v.1.5), R6(v.2.4.0), mitml(v.0.3-6), pillar(v.1.3.1.9000), withr(v.2.1.2), xts(v.0.11-0), survival(v.2.42-6), abind(v.1.4-5), nnet(v.7.3-12), crayon(v.1.3.4), arrayhelpers(v.1.0-20160527), jomo(v.2.6-4), utf8(v.1.1.4), rmarkdown(v.1.13), grid(v.3.5.1), callr(v.2.0.4), forcats(v.0.4.0), threejs(v.0.3.1), digest(v.0.6.20), xtable(v.1.8-4), httpuv(v.1.5.1), stats4(v.3.5.1), munsell(v.0.5.0), beeswarm(v.0.2.3), vipor(v.0.4.5) and shinyjs(v.1.0)